Synlett 2007(10): 1521-1524  
DOI: 10.1055/s-2007-982542
LETTER
© Georg Thieme Verlag Stuttgart · New York

New Access to Kainic Acid via Intramolecular Palladium-Catalyzed Allylic Alkylation

Mathieu Bui The Thuonga, Silvia Sottocornolaa, Guillaume Prestata, Gianluigi Brogginib, David Madec*a, Giovanni Poli*a
a Université Pierre et Marie Curie-Paris 6, Laboratoire de Chimie Organique (UMR CNRS 7611), Institut de Chimie Moléculaire (FR 2769), case 183, 4 place Jussieu, 75252 Paris cedex 05, France
b Dipartimento di Scienze Chimiche e Ambientali, Università dell"Insubria, via Valleggio 11, 22100 Como, Italy
Fax: +33(1)44277567; e-Mail: giovanni.poli@upmc.fr; e-Mail: madec@ccr.jussieu.fr;
Further Information

Publication History

Received 22 March 2007
Publication Date:
06 June 2007 (online)

Abstract

The formal synthesis of kainic acid was carried out in eleven steps. The key cyclization step was accomplished through an intramolecular palladium-catalyzed allylic alkylation of an allylic sulfone. Further functionalization of the resulting pyrrolidone ­featured, inter alia, a N-heterocyclic carbene-copper hydride (NHC-CuH)-mediated stereoconvergent conjugate reduction.

    References and Notes

  • 1 Murukami S. Takemoto T. Shimizu Z. J. Pharm. Soc. Jpn.  1953,  73:  1026 
  • 2 Hollmann M. Heinemann S. Annu. Rev. Neurosci.  1994,  17:  31 
  • 3 Cantrell BE. Zimmerman DM. Monn JA. Kamboj RK. Hoo KH. Tizzano JP. Pullar IA. Farrell LN. Bleakman D. J. Med. Chem.  1996,  39:  3617 
  • 4 Coyle JT. Schwarcz R. Nature (London)  1976,  263:  244 
  • 5 Sperk G. Prog. Neurobiol. (Oxford)  1994,  42:  1 
  • 6 Oppolzer S. Thirring KJ. J. Am. Chem. Soc.  1982,  104:  4978 
  • For reviews concerning previous syntheses of kainic acid, see:
  • 7a Parsons AF. Tetrahedron  1996,  52:  4149 
  • 7b Clayden J. Read B. Hebditch KR. Tetrahedron  2005,  61:  5713 
  • 7c Rosini G. Chim. Ind. (Milan)  2001,  83:  75 
  • For some recent syntheses of kainic acid:
  • 8a Nakagawa H. Sugahara T. Ogasawara K. Org. Lett.  2000,  2:  3181 
  • 8b Clayden J. Menet CJ. Mansfield DJ. Chem. Commun.  2002,  38 
  • 8c Clayden JC. Menet CJ. Tchabanenko K. Tetrahedron  2002,  58:  4727 
  • 8d Trost BM. Rudd MT. Org. Lett.  2003,  5:  1467 
  • 8e Hoppe D. Montserrat Martinez M. Org. Lett.  2004,  6:  3743 
  • 8f Hodgson DM. Hachisu S. Andrews MD. Org. Lett.  2005,  7:  815 
  • 8g Lautens M. Scott ME. Org. Lett.  2005,  7:  3045 
  • 8h Anderson JC. O’Loughlin JMA. Tornos JA. Org. Biomol. Chem.  2005,  3:  2741 
  • 8i Morita Y. Tokuyama H. Fukuyama T. Org. Lett.  2005,  7:  4337 
  • 8j Hodgson DM. Hachisu S. Andrews MD. J. Org. Chem.  2005,  70:  8866 
  • 8k Poisson J.-F. Orellana A. Greene AE. J. Org. Chem.  2005,  70:  10860 
  • 8l Pandey SK. Orellana A. Greene AE. Poisson J.-F. Org. Lett.  2006,  8:  5665 
  • 8m

    Chalker, J.; Yang, A.; Deng, K.; Cohen, T., unpublished results; private communication from T. Cohen in the form of a lecture in Paris, 2006.

  • 9a Tremblay J.-F. Chem. Eng. News  2000,  78:  14 
  • 9b Tremblay J.-F. Chem. Eng. News  2000,  78:  131 
  • 10 Poli G. Giambastiani G. Pacini B. Porcelloni M. J. Org. Chem.  1998,  63:  804 
  • 11 Madec D. Prestat G. Martini E. Fristrup P. Poli G. Norrby P.-O. Org. Lett.  2005,  7:  995 
  • 12 Compound 1 (66% ee) was obtained in seven steps and 16% global yield from commercially available compounds: Xia Q. Ganem B. Org. Lett.  2001,  3:  485 
  • 13 Hecht S. Amslinger S. Jauch J. Kis K. Trentinaglia V. Adam P. Eizenreich W. Bacher A. Rohdich F. Tetrahedron Lett.  2002,  43:  8929 
  • 14a Large-scale preparation of 4-chloro-2-methylbut-2-en-1-ol from 2-methyl-2-vinyl oxirane and TiCl4 (see ref. 13) afforded a poor (27%) yield. Alternatively, treatment of the same oxirane with CuCl2-LiCl (see ref. 13) gave the corresponding aldehyde in 68% yield. NaBH4 reduction of the latter gave the desired alcohol in 43% yield, see: Fox TD. Poulter CD. J. Org. Chem.  2002,  67:  5009 
  • 14b

    Acetylation with Ac2O-Et3N gave 1-acetoxy-4-chloro-2-methyl-2-butene in 29% yield (Scheme [8] ).

  • For some examples concerning the use of allylic sulfones in palladium-catalyzed allylic alkylation, see:
  • 15a Trost BM. Schmuff NR. Miller JM. J. Am. Chem. Soc.  1980,  102:  5979 
  • 15b Clayden J. Julia M. J. Chem. Soc., Chem. Commun.  1994,  1905 
  • 15c Orita A. Watanabe A. Tsuchiya H. Otera J. Tetrahedron  1999,  55:  2889 
  • 15d Cheng W.-C. Halm C. Evarts JB. Olmstead MM. Kurth MJ. J. Org. Chem.  1999,  64:  8557 
  • 15e Deng K. Chalker J. Yang A. Cohen T. Org. Lett.  2005,  7:  3637 
  • 16a Truce WE. Goralski CT. Christensen LW. Bavry RH. J. Org. Chem.  1970,  35:  4217 
  • 16b Min JH. Lee JS. Yang JD. Koo S. J. Org. Chem.  2003,  68:  7925 
  • 18a Fortunato JM. Ganem B. J. Org. Chem.  1976,  41:  2194 
  • 18b Oppolzer W. Poli G. Tetrahedron Lett.  1986,  27:  4717 
  • For pioneering work concerning reduction reactions by copper hydride, see:
  • 19a Mahoney WS. Brestensky DM. Stryker JM. J. Am. Chem. Soc.  1988,  110:  291 
  • For copper-catalyzed examples using PMHS as hydride source, see:
  • 19b Lipshutz BH. Keith J. Papa P. Vivian R. Tetrahedron Lett.  1998,  39:  4627 
  • 19c Lipshutz BH. Chrisman W. Noson K. Papa P. Sclafani JA. Vivian RW. Keith JM. Tetrahedron  2000,  56:  2779 
  • 19d Lipshutz BH. Chrisman W. Noson K. J. Organomet. Chem.  2001,  624:  367 
  • 19e

    For the first example reporting the use of NHC-copper catalyst, see:

  • 19f Jurkauskas V. Sadighi JP. Buchwald SL. Org. Lett.  2003,  5:  2417 
  • 21 Oppolzer W. Andres H. Helv. Chim. Acta  1979,  62:  2282 
17

Procedure for the Palladium-Catalyzed Cyclization Reaction: To a solution of tetrabutylammonium bromide (10 mol%) in CH2Cl2 (1 mL) were added in this order allylpalladium chloride dimer (5 mol%) and dppe (12.5 mol%). After 5 min stirring, to the thus formed catalytic system were added successively a CH2Cl2 (5 mL) solution of 6 (795 mg, 1.6 mmol), H2O (6.0 mL), and a 50% aq KOH solution (6.4 mmol). The resulting biphasic system was stirred vigorously at r.t. for 16 h. The aqueous phase was extracted with CH2Cl2 (3 ×). The collected organic phases were dried over MgSO4 and the solvent was removed in vacuo. The crude product was purified by flash chromatography to afford 7 in quantitative yield as an oil. 1H NMR (400 MHz, CDCl3): δ = 7.19 (d, J = 8.6 Hz, 2 H), 6.86 (d, J = 8.6 Hz, 2 H), 4.78 (br s, 2 H), 4.46 (d, J = 14.6 Hz, 1 H), 4.40 (d, J = 14.6 Hz, 1 H), 3.87 (d, J = 10.8 Hz, 3 H), 3.81 (d, J = 10.8 Hz, 3 H), 3.80 (s, 3 H), 3.55 (dd, J = 8.3, 9.6 Hz, 1 H), 3.20-3.32 (m, 1 H), 2.98-3.07 (m, 1 H), 2.94 (dd, J = 4.5, 22.8 Hz, 1 H), 1.63 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 168.3, 159.2, 144.3, 129.6, 127.4, 114.1, 112.3, 55.3, 53.5 (J = 100 Hz), 50.1, 46.4, 46.0 (J = 140 Hz), 39.7, 19.2. IR: 2955, 2360, 1688, 1514, 1247, 1031 cm-1. MS (ESI+): m/z = 392 [M + K+], 376 [M + Na+], 354 [M + H+].

20

Procedure for the Hydride Conjugate Addition: An oven-dried flask under an argon atmosphere was charged with IPr-CuCl (2 mol%), t-BuONa (10 mol%) and anhydrous toluene (1 mL). After 10 min stirring at r.t., PMHS (90 µL) was added and the resulting orange solution was stirred at r.t. for 5 min. Then toluene (1 mL), and further PMHS (270 µL) were added. A solution of 8 (1:1 E/Z mixture) (508 mg, 1.54 mmol) in toluene (8 mL) was added via cannula to the thus generated reducing system and the reaction mixture was stirred at r.t. for 16 h. H2O was added, the aqueous phase was extracted with EtOAc (3 ×). The collected organic phases were washed with brine, dried over MgSO4 and the solvents were removed in vacuo. The crude product was purified by flash chromatography to afford pure 9 as an oil (72%). 1H NMR (400 MHz, CDCl3): δ = 7.16 (d, J = 8.6 Hz, 2 H), 6.83 (d, J = 8.6 Hz, 2 H), 4.74 (br s, 1 H), 4.65 (br s, 1 H), 4.39 (d, J = 14.2 Hz, 1 H), 4.35 (d, J = 14.2 Hz, 1 H), 4.11 (q, J = 7.1 Hz, 2 H), 3.77 (s, 3 H), 3.36-3.42 (m, 1 H), 3.10-3.15 (m, 2 H), 3.03 (dd, J = 1.3, 10.1 Hz, 1 H), 2.83 (dd, J = 3.5, 17.2 Hz, 1 H), 2.21-2.32 (m, 1 H), 1.42 (s, 3 H), 1.23 (t, J = 7.1 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 174.1, 172.5, 159.2, 143.1, 130.0, 128.1, 114.9, 114.0, 60.6, 55.3, 49.0, 46.3, 42.0, 41.6, 31.0, 19.8, 14.3. IR: 2936, 1731, 1687, 1513, 1246, 1175, 1032 cm-1.