The Role of Alkamides as an Active Principle of *Echinacea*

Abstract

Alkamides are the major lipophilic constituents of *Echinacea* preparations, which are widely used in some European countries and in North America for common colds. In earlier investigations they have been shown to possess stimulatory effects on phagocytosis. Recent experiments have demonstrated that alkamides are detectable in human blood in relevant concentrations after oral administration of *Echinacea* preparations. Alkamides show structural similarity with anandamide, an endogenous ligand of cannabinoid receptors. Consequently, it was found that alkamides bind significantly to CB2 receptors, which is now considered as a possible molecular mode of action of *Echinacea* alkamides as immunomodulatory agents. It was also demonstrated recently in several studies that alkamide-containing *Echinacea* preparations trigger effects on the pro-inflammatory cytokines. They were therefore suggested as a new class of cannabinomimetics. However, the therapeutic relevance of these findings is still not clear as clinical studies on the common cold show contradictory results. Among the many pharmacological properties reported, investigations concerning herb-drug interactions have been neglected for a long time. Latest research concludes that prolonged use of *Echinacea* poses a minimal risk for co-medications metabolized by the P450 enzymes.

Key words

Alkamides · *Echinacea purpurea* · *Echinacea angustifolia* · Asteraceae · immunomodulation · pharmacokinetics · cannabinoid receptor binding · herb-drug interactions

Supporting information available online at http://www.thieme-connect.de/ejournals/toct/plantamedica

Introduction

Echinacea preparations represent the most common herbal immunomodulators. They are marketed mainly for the treatment and prevention of the common cold and other upper respiratory tract infections (URTIs). An analysis reveals that completely different preparations are sold under the name *Echinacea* using different plant parts and different extraction solvents. The most abundantly used species are *Echinacea angustifolia*, *Echinacea purpurea* and *Echinacea pallida* [1]. Several reviews on the effectiveness of orally ingested *Echinacea* extracts in reducing the incidence, severity, or duration of acute URTIs have been published. The majority of trials investigated whether *Echinacea* preparations shorten the duration or decrease the severity of symptoms of the common cold (for reviews see [2], [3], [4]). A recent Cochrane review [3] concluded that especially preparations based on the aerial parts of *E. purpurea* might be effective for the early treatment of colds in adults but results are not fully consistent. Beneficial effects of other *Echinacea* preparations for preventative purposes might exist but have not been shown in independently replicated rigorously randomized trials.

Affiliation

Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Karl-Franzens-University, Graz, Austria

Correspondence

Univ. Prof. Dr. Rudolf Bauer · Institute of Pharmaceutical Sciences · Department of Pharmacognosy · Karl-Franzens-University Graz · Universitätsplatz 4 · 8010 Graz · Austria · Phone: +43-316-380-8700 · Fax: +43-316-380-9860 · E-mail: rudolf.bauer@uni-graz.at

Received July 10, 2006 · **Revised** April 16, 2007 · **Accepted** April 20, 2007

Bibliography

So far, polysaccharides, glycoproteins, caffeic acid derivatives and alkamides have been considered as the constituents most relevant for activity [5]. Alkamides produce a strong tingling effect in the mouth, which has been considered as a marker for high quality *Echinacea* by the American Indians [6], [7], [8], [9]. In recent years, research has focused on these lipophilic constituents of *Echinacea* because of their bioavailability. This review summarizes the evidence for the contribution of alkamides to the immunomodulatory effect of *Echinacea* and their possible role as active principles in the use of *Echinacea* for common cold.

Distribution of Alkamides in Echinacea

Alkamides are the major lipophilic constituents and can be found in high concentrations in the roots of *E. purpurea* and *E. angustifolia* and with decreasing concentrations in the aerial parts of *E. purpurea*, *E. pallida* and *E. angustifolia*. They vary between species and between different parts of the plant [10], [11]. A distribution study indicated that the root bark and secondary roots of *Echinacea angustifolia* contained the highest concentrations, whereas the stems and leaves of *E. angustifolia* were devoid of alkamides [12]. High quality *E. purpurea* root material contains up to 6 mg/g alkamides [13]. The main alkamides are the isomeric dodeca-2E,4E,8Z,10E/Z-tetraenolic acid isobutyalamides (8a/8b) (Fig. 1). Similar N-isobutyalamides are also present in *Spilanthes* spp. and *Xanthoxylum* species [6], [7].

Pharmacology with Molecular Biological Aspects

A series of previous pharmacological experiments have shown that *Echinacea* extracts containing alkamides have significant anti-inflammatory and immunomodulatory properties. Among the many pharmacological effects reported, modulation of macrophages and PMN immune cells and effects on cytokine/chemokine expression in human cells have been demonstrated most convincingly [2], [4], [14], [15], [16], [17], [18], [19].

The lipophilic part of an ethanolic extract obtained from the roots of *E. purpurea* at a concentration of 10⁻³ % and from the roots of *E. angustifolia* (10⁻⁴ %), which contain the full spectrum of alkamides, stimulated phagocytosis of yeast particles by human polymorphonuclear neutrophils (PMN) in *vitro* by 37 % and 34 %, respectively. In mice, *per os* administration of lipophilic alkamide fractions from the roots of *E. angustifolia* and *E. purpurea* enhanced phagocytosis in the carbon-clearance assay by factors of 1.5 and 1.7, respectively [20], [21]. Other in *vivo* studies in rats have shown that administration of hydroalcoholic extracts (100 μL twice daily by oral gavage for 4 days) of *E. purpurea* roots and aerial parts containing defined concentrations of cichoric acid, polysaccharides and alkamides stimulated the phagocytic activity of macrophages dose-dependently [22]. An increase in lipopolysaccharide-stimulated nitric oxide release was observed in macrophages obtained from the spleens of rats previously treated with the standardized *Echinacea purpurea* extract. A similar set of experiments demonstrated stimulation of alveolar macrophage function by alkamides administered to healthy rats [23]. In murine RAW264.7 macrophages, alkamides exerted an inhibitory effect on LPS-mediated activation, and a significant reduction in NO production was observed in comparison to cells treated with LPS alone. These data suggest that alkamides may have not only immunostimulatory but also anti-inflammatory activity [24]. An "Echinacea Premium Liquid alkamide fraction", which did not contain caffeic acid derivatives but only alkamides with undeca-2E-ene-8,10-dienoic acid isobutyramide as the major 2-ene alkamide and dodeca-2E,4E,8Z,10Z-tetraenolic acid isobutyramide as the major 2,4-diene alkamide, was found to significantly inhibit TNF-α production under LPS-stimulated conditions in the mouse macrophage cell line RAW 264. In these macrophages, only the alkamide mixture isolated from an ethanolic *Echinacea* extract ("Echinacea Premium Liquid") of *Echinacea purpurea* (300 mg/mL) and *Echinacea angustifolia* roots (200 mg/mL) significantly decreased LPS-stimulated NO production at a concentration of 2.0 μg/mL. However, the individual alkamides, undeca-2E-ene-8,10-dienoic acid isobutyramide and dodeca-2E,4E,8Z,10Z-tetraenolic acid isobutyramide as found in the isolated alkamide mixture did not reduce the LPS-induced NO production in the same assay [25].

Clifford has reported *in vitro* inhibition of cyclooxygenase-1 (COX-1) and, to a lesser extent, of cyclooxygenase-2 (COX-2) by alkamides isolated from *E. purpurea* roots [26]. In *vitro* inhibition of 5-lipoxygenase and cyclooxygenase (from sheep seminal microsomes) has also been reported for polysaturated alkamides from *E. angustifolia* roots and *Achillea* species [27]. COX-1 inhibitory activity was highest for undeca-2Z,4E-diene-8,10-dienoic acid isobutyramide (2b), dodeca-2E,4Z-diene-8,10-dienoic acid 2-methylbutyramide (6) and undeca-2E,4Z-diene-8,10-dienoic acid 2-methylbutyramide (15), with inhibitions of 60, 48 and 55 %, respectively, at concentrations of 100 μg/mL. Undeca-2Z,4E-diene-8,10-dienoic acid isobutyramide (2b) possessed with 46 % the strongest COX-2 inhibitory activity. Compounds 6 and 15 showed 31 and 39 % inhibition of COX-2, respectively [26]. Inhibition of 5-lipoxygenase has also been described for extracts of roots of *E. purpurea*, *E. pallida* and *E. angustifolia* with IC₅₀ values of 0.642, 1.08 and 0.444 μg root/mL, respectively. The alkamide concentrations in the root of each species were 0.05 %, traces and 0.2 %, respectively [28]. Inhibition of cyclooxygenase is known as an effective strategy to suppress pain and inflammation. Alkamides isolated from the roots of *E. angustifolia* inhibited COX-2-dependent prostaglandin E₂ formation, but did not inhibit COX-2 expression at the transcriptional or translational level. An analysis of 8 different alkamides revealed a contribution of undeca-2Z-ene-8,10-dienoic acid isobutyramide (3b), dodeca-2E-ene-8,10-dienoic acid isobutyramide (5) and dodeca-2E,4Z-diene-8,10-dienoic acid 2-methylbutyramide (6) to this response [29]. Recently, Gertsch et al. [14] demonstrated the modulation of TNF-α gene expression and multiple signal transduction pathways by *Echinacea* alkamides and postulated a mechanism related to cannabinoid receptors. Parallel *in vitro* kinetic experiments measuring both mRNA and protein levels over a time span of 39 h after a co-incubation with LPS and *E. purpurea* tincture (Echinaforce™, endotoxin < 0.5 EU/mL) have been performed. LPS-stimulated TNF-α protein expression was potently modulated by the *Echinacea purpurea* preparation, resulting in a significant inhibition (40 %) during the first 20 h, and subsequent stimulation of TNF-α protein expression (Fig. 2).
To ascertain whether CB1 was the receptor subtype involved in the observed effects, a CB2 antagonist was used in combination with the dodeca-2E,4E,10Z-tetraenoic acid isobutylamides.

The specific antagonist strongly abolished TRPV1 transcription and thus indicated a strict peripheral cannabimimetic process. In parallel, receptor binding studies to rodent CB1, and

Fig. 1 Structures of the main Echinoderm alkaloids.

1 Tetradeca-2E-ene-10,12-diynoic acid isobutylamide
2a/2b Undeca-2E/Z,4Z/E-diene-8,10-diynoic acid isobutylamides
3a/3b Undeca-2E/Z-ene-8,10-diynoic acid isobutylamides
4 Dodeca-2E,4Z-diene-8,10-diynoic acid isobutylamide
5 Dodeca-2E-ene-8,10-diynoic acid isobutylamide
6 Dodeca-2E,4Z-diene-8,10-diynoic acid 2-methylbutylamide
7 Dodeca-2E,4Z,10Z-triene-8-ynoic acid isobutylamide
8a/8b Dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamides ("Tetraene")
9 Pentadeca-2E,9Z-diene-12,14-diynoic acid isobutylamide
10 Dodeca-2E-ene-8,10-diynoic acid 2-methylbutylamide
11 Dodeca-2E,4E,8Z-trienoic acid isobutylamide
12 Dodeca-2E,4E-diynoic acid isobutylamide
13 Hexadeca-2E,9Z-diene-12,14-diynoic acid isobutylamide
14 Undeca-2Z-ene-8,10-diynoic acid 2-methylbutylamide
15 Undeca-2E,4Z-diene-8,10-diynoic acid 2-methylbutylamide
CB₂ receptors were conducted by Woelkart et al. [30]. Most of the *Echinacea* alkamides (1, 2a, 2b, 6, 7, 8a, 8b, 9, 10, 11, 12) showed affinities to CB₂ receptors with Ki values lower than 20 μM, some only five times less active than anandamide, the endogenous ligand [30] (Fig. 3 and 4). The most recent evidence of CB-receptor-binding has been demonstrated by Raduner et al. [16]. At concentrations below 100 nM, dodeca-2E,4E,8Z,10Z-tetraenoic acid isobutylamide (8a) and dodeca-2E,4E-dienoic acid isobutylamide (12) potently displaced the radioligand from membrane recombinantly overexpressing CB₂ receptors with Ki values of 57 ± 14 nM and 60 ± 13 nM, respectively. In addition the interaction of alkamides with CB₂ receptors was explored in a homology model. In this binding arrangement, the importance of the aromatic ring of Tyr190 of the CB-receptor was highlighted [16].
(Echinacea purpurea extract (95:5 ethanol:water) and two Echinacea-derived alkaloids, dodeca-2E,4E,8Z,10Z-tetraenoic acid isobutylamide and dodeca-2E,4E-dienoic acid isobutylamide at concentrations of 0.6 to 25 μg/mL significantly suppressed the ability of activated Jurkat T cells to produce IL-2, an important factor involved in response to infection, which consequently leads to a faster resolution of cold symptoms [31].

An ethanolic and an ethyl acetate fraction of alkaloids obtained from the roots of Echinacea angustifolia exhibited significant activity against three viruses often involved in colds and influenza (herpes simplex virus, influenza virus, and rhinovirus). This activity correlated with the presence of alkaloids [32]. In a previous paper, it was reported that Echininil™ (Factors R & D Technologies; Burnaby, Canada), a formulation prepared from freshly harvested E. purpurea plants and standardized on the basis of three known active components (alkaloids, cichoric acid and polysaccharides) is effective for the treatment of a naturally acquired common cold [33]. However, the mechanism and the responsible constituents by which this effect was achieved remained unknown. In a recent clinical study, the effects of Echinacea were associated with a significant and sustained increase in the number of circulating total white blood cells, monocytes, neutrophils and NK cells. Furthermore, Echinacea treatment suppressed the cold-related increase in superoxide production by neutrophils [34], [35]. These data suggest that alkaloids have the dual actions of anti-inflammatory and indirect antiviral effects, which together may influence the course of upper respiratory infection. In summary, a lot of recent pharmacological data suggest that Echinacea alkaloids may not only have immunostimulatory but also anti-inflammatory and antiviral activity by a reduction in NO, TNF-α, IL-8, IL-2 and COX-dependent E2 formation in different cell types and assays used.

Biopharmaceutics and Herb-Drug Interactions

In 2001, Dietz et al. demonstrated for the first time the bioavailability of dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamides (8a/8b) in humans after oral administration of an ethanolic extract of E. purpurea [36]. Later Jager et al. could show the transport of dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamides across Caco-2 monolayers, in an in vitro model for the intestinal epithelial barrier [37]. A similar study explored the transport of 12 alkaloids from a proprietary preparation of Echinacea, which contained a 60% ethanol-water extract of E. angustifolia root (200 mg/mL) and E. purpurea root (300 mg/mL). Both the 2,4-diene and the 2-ene alkaloids readily penetrated the monolay-

Fig. 5 Proposed binding conformation of dodeca-2E,4E,8Z,10Z-tetraenoic acid isobutylamide (8a) and dodeca-2E,4E-dienoic acid isobutylamide (12) in the CB2-receptor. A The putative binding site for CB2 ligands is located adjacent to helices III, V, VI and VII at the near extracellular side of the 7TM bundles. B The putative interaction of alkaloids with the CB2-receptor is shown. The oxygen atom in the hydroxy group of Tyr190 forms a hydrogen bond with the amide hydrogen of the alkaloid, and the aromatic ring of Tyr190 exhibits II-II interactions with the C-2/C-3 double bond in the alkaloid. Reprinted with permission by publisher ASBMB, J Biol Chem from reference Raduner S et al. [16].
ers, although apparent permeability coefficient values varied (range 3×10^{-6} to 3×10^{-4} cm s$^{-1}$) depending on the structure. Saturated compounds and those with N-terminal methylation had lower permeability coefficients [38]. More recently, a pharmacokinetic study in humans showed that the absorption maximum (C_{max}) of dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutyramides (“tetraenes”) is reached already 30 min after oral administration of a 60 % ethanol extract from the roots of *E. angustifolia* (Fig. 6). Initial concentrations of tetraenes could be detected in the blood as soon as 10 minutes after administration. Because of this fast absorption, the mucous membrane of the mouth is most likely already a major area of absorption [39]. In a subsequent study the absorption from tablets manufactured from ethanolic liquid extracts of *E. angustifolia* and *E. purpurea* which were taken immediately after a standard high fat breakfast was compared. Most alkamides were rapidly absorbed and were detected in plasma 20 min after tablet ingestion and remained detectable for up to 12 h. In contrast, caffeic acid derivatives could not be detected in any plasma sample at any time after tablet ingestion and therefore were reported not to be bioavailable. No obvious differences were observed in the pharmacokinetics of individual or total alkamides in two additional fasted subjects who took the same dose of the *Echinacea* preparation [40].

Based on the experience from these studies a cross-over study was performed to compare the pharmacokinetics and bioavailability of different formulations of an ethanolic extract from fresh *E. purpurea* prepared from 95 % aerial parts and 5 % roots (*Echinacea*™ tincture and tablets). With this study design two pharmacokinetic curves for each galenic form in every subject have been obtained in order to exclude variability from the individual metabolic systems. The mean C_{max} of dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutyramides (8a/8b) absorbed after oral administration of the tincture occurred at 30 min with a value of 0.40 ng/mL serum. In comparison the T_{max} of tablets was 45 min with a C_{max} of 0.12 ng/mL. (Fig. 7) [15]. In all pharmacokinetic studies performed up-to-date, the time to reach the mean concentration maximum after administration of liquid *Echinacea* preparations (*E. angustifolia* or *E. purpurea*) was about 30 minutes (Table 1). T_{max} after administration of *Echinacea* tablets, which has been investigated in two clinical studies, was varying within 45 minutes to 2.3 hours [40], [15]. As it has also been shown for
Table 1 Summary of all pharmacokinetic studies of *Echinacea* preparations performed up to now

<table>
<thead>
<tr>
<th>Reference</th>
<th>Plant species and preparation</th>
<th>Dose</th>
<th>Absorption</th>
<th>Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>[41]</td>
<td>E. purpurea mother tincture, Weber & Weber for the alkamides.</td>
<td>10, 20, 30, 40 and 50 mL mother tincture with 0.25, 0.49, 0.74, 0.99 and 1.24 mg dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamides (tetaene) (8a/8b) (24.7 μg/mL)</td>
<td>Mean C\textsubscript{max} of 14.0, 21.6, 32.2, 45.2 and 37.7 ng/mL, respectively with a T\textsubscript{max} of 30, 30, 30, 27.5 and 50 minutes.</td>
<td>High performance liquid chromatography with PDA detection at 254 nm for the alkamides and 330 nm for cichoric acid.</td>
</tr>
<tr>
<td></td>
<td>E. purpurea pressed juice, Schoenenberger for cichoric acid.</td>
<td>10, 30, 60, 90 and 120 mL of the pressed juice with 40, 120, 240, 360 and 480 mg cichoric acid (4 mg/mL)</td>
<td>Mean C\textsubscript{max} of 0, 31.5, 43.3, 82.6, 129.4 ng/mL, respectively with a T\textsubscript{max} of -, 2.0, 3.0, 3.6, 1.6 hours.</td>
<td></td>
</tr>
<tr>
<td>[36]</td>
<td>E. purpurea; mother tincture</td>
<td>65 mL concentrated mother tincture with 4.3 mg dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamides (tetaene) (8a/8b) (66.2 μg/mL)</td>
<td>44 ng/mL tetaene (8a/8b) one hour after application</td>
<td>High performance liquid chromatography with PDA detection (260 nm)</td>
</tr>
<tr>
<td>[39]</td>
<td>E. angustifolia; 60% ethanolic extract from the roots</td>
<td>2.5 mL of the ethanolic extract with 2.0 mg tetaene (8a/8b) (0.8 mg/mL)</td>
<td>The mean C\textsubscript{max} reached after 30.3 (T\textsubscript{max}) minutes was 10.9 ng/mL with an area under the curve of 1029.1 ng equivalent min/mL.</td>
<td>Liquid chromatography, electrospray ionization ion-trap mass spectrometry with MS/MS detection in positive SRM (selected reaction monitoring) mode.</td>
</tr>
<tr>
<td>[40]</td>
<td>Echinacea Premium tablets, MediHerb, Australia, each containing extract equivalent to 675 mg of E. purpurea root plus 600 mg of E. angustifolia root prepared from the dried ethanolic extracts of the two Echinacea species.</td>
<td>Four Echinacea Premium tablets with a total of 43.68 mg alkamides, especially a total of 17.16 mg dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamide (8a)</td>
<td>C\textsubscript{max} for total alkamides was 336 ng/mL, T\textsubscript{max} was 2.3 hours and the AUC was 714 μg equivalent h/L. Especially for (8a) C\textsubscript{max} was 221 ng/mL with a T\textsubscript{max} of 1.9 h and a AUC of 476 μg eq h/L.</td>
<td>Liquid chromatography-mass spectrometry equipped with an APCI interface operating in positive ion SIM mode.</td>
</tr>
<tr>
<td>[15]</td>
<td>An extract of fresh organically grown E. purpurea, 95% herb and 5% roots with 65 Vol. % alcohol. (EchinforceTM, Bioforce AG, Switzerland)</td>
<td>4 mL EchinforceTM tincture (0.018 mg/mL dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamides 8a/8b) or 12 EchinforceTM tablets (0.006 mg/tablet 8a/8b), which both contained 0.07 mg of 8a/8b (tetaene).</td>
<td>The mean maximum concentration (C\textsubscript{max}) after administration of the EchinforceTM tincture and EchinforceTM tablets was reached after 30 minutes with 0.40 ng/mL and after 45 minutes with 0.12 mg/mL, respectively.</td>
<td>Liquid chromatography, electrospray ionization ion-trap mass spectrometry with MS/MS detection in positive SRM (selected reaction monitoring) mode.</td>
</tr>
</tbody>
</table>

Echinacea tinctures, the more concentrated preparations needed longer to attain T\textsubscript{max}. T\textsubscript{max} for the dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamides (8a/8b) was obtained 2.3 hours after administration of 17.16 mg and 45 minutes after administration of 0.07 mg.

One reason could be the reported micelle formation of the alkamides [16]. The solubility of the lipophilic compounds is limited in aqueous solutions as detected by a Tyndall effect at concentrations above 10 μM and even low alkamide concentrations (~300 nM) resulted in the formation of detectable particles in buffer [16]. Although there are no investigations available concerning micellar structures of alkamides in blood, only crude estimates of (apparent) bioavailability can be calculated from the C\textsubscript{max} for the dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamides (8a/8b) from all performed pharmacokinetic studies. In addition, all performed pharmacokinetic studies [15], [39], [40], [41] have been single-dose studies and provide evidence that alkamides are bioavailable and that their pharmacokinetics are in agreement with the one dose three times daily regimen already recommended for *Echinacea*. To accurately determine the interdosing interval, a study with a multiple-dose protocol would be needed to determine the steady-state plasma concentration for each of the active compounds.

Besides bioavailability, information concerning the metabolism and plant-drug interactions is an important issue in the evaluation of *in vivo* activity of alkamides. An interaction can be particularly important when the total drug absorption is altered. Most drug interaction studies which investigated the metabolism by human liver microsomes in vitro have been carried out with pure alkamides so far [42]. Time- and NADPH-dependent degradation of alkamides was observed in microsomal fractions suggesting that they are metabolized by cytochrome P450 enzymes in human liver. There was a difference in the susceptibility of 2-ene and 2,4-diene pure synthetic alkamides to microsomal degradation. Obviously less degradation of the dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamides was evident in the mixture of alkamides present in an ethanolic *Echinacea* extract, suggesting that metabolism by liver P450s was dependent both on their chemistry and the combination present in the incubation mixture. Matthias et al. [43] suggested that *Echinacea* may affect the P450-mediated metabolism of other concurrently ingested pharmaceuticals. However, *in vivo* assessments of *Echinacea* preparations are essential to predict possible CYP-mediated interactions. Twelve young adults participated in an open-label, randomized study at the University of Arkansas. Each participant took 800 mg *E. purpurea* (plant part and type of extract not defined) twice daily for 28 days and was followed by...
a 30-day washout period. Only chiceric acid was used as phytochemical marker compound. No significant effect on CYP activity in humans was observed [44]. Therefore, in previous reports, *Echinacea purpurea* appeared to have a minor influence on CYP3A4 in vivo. On the other hand, Gorski et al. [45] demonstrated in an in vivo study with twelve healthy subjects the reduction of the oral clearance of substrates of CYP1A2 but not the oral clearance of substrates of CYP2C9 and CYP2D6 after taking 400 mg *E. purpurea* root extract four times a day for 8 days. *Echinacea* selectively modulates the catalytic activity of CYP3A at hepatic and intestinal sites. Therefore, care should be taken when *Echinacea* is coadministered with drugs dependent on CYP3A or CYP1A2 for their elimination [45]. More recently Yale et al. [46] investigated the inhibition of three of the most important drug metabolizing enzymes, cytochrome P450 3A4, 2D6, and 2C9 using high throughput CYP inhibition screening *in vitro* assays. Depending on the model substrate, a 70% methanol extract of *E. purpurea* aerial parts exhibited mild inhibition of CYP3A4 activity or even mild inducing effects. Little effect on CYP2D6 and moderate inhibition of CYP2C9 were also observed for the *E. purpurea* preparation. The phytochemical content of the herbal preparation was not reanalyzed before analyses [46]. The few *in vivo* studies performed up to now, used preparations which were not standardized or fully characterized. Therefore no relevant statements can be made whether critical inhibitory levels of alkamides can be reached in the liver under normal therapeutic use. In future the level of achievable serum concentrations of *Echinacea* constituents should be considered in *in vitro* studies.

Summary and Conclusion

It has been demonstrated in many animal, *in vitro* and *ex vivo* studies that an alkamide-enriched *Echinacea* fraction or isolated alkamides have significant anti-inflammatory and immunomodulatory properties. Modulation of macrophages, reduction of NO and TNF-α, and inhibition of the arachidonic acid metabolism could be directly related to alkamides. Dodeca-2E,4E,12-diene-8,10-diyonic acid 2-methylbutylamide showed so far the best inhibition of COX-2-dependent prostaglandin E₂ formation. Although these animal and *in vitro* studies lend mechanistic credibility, the bioavailability and *ex vivo* studies give further information on therapeutic benefits in humans. Recent experiments have demonstrated that alkamides are detectable in human blood after oral ingestion of different *Echinacea* preparations. Effects on pro-inflammatory cytokines after LPS-stimulation could be shown in an *ex vivo* study. A single application of *Echinacea* led to a significant decrease in the production of IL-8 and TNF-α. There are also data showing that alkamides from *Echinacea* are a new class of CB₂-specific cannabinomimetics, which share the anti-inflammatory properties of anandamide and the cannabinoids from *Cannabis sativa*. However, as it has been shown in some studies that the anti-inflammatory effects exerted by cannabinomimetics are not strictly CB₂-dependent, this therefore raises the question about a possible common second target.

Furthermore, *Echinacea*-derived alkamides significantly suppressed T-lymphocytes, which are key mediators of antiviral immunity and exhibited activity against herpes simplex virus, influenza virus and rhinovirus, which are often implicated in colds and influenza. In a clinical study a standardized *E. purpurea* preparation was effective for the treatment of a naturally acquired common cold [33], while an alkamide-enriched *E. angustifolia* root extract failed in a recent experimental rhinovirus inoculation study [47]. It has be argued whether the dose of 300 mg of *Echinacea* root, given three times each day, containing 1.5 mg or less dodeca-2E,6E,8Z,10E/Z-tetraenoic acid isobutylylamides was too low to obtain a significant effect on symptoms associated with rhinovirus infection [48]. Therefore, further clinical studies are needed to evaluate the therapeutic role of alkamides. Also the influence of alkamides on cytochrome P450 enzymes needs further in *vivo* evaluation. Most of the *in vivo* studies performed so far used phytochemically insufficiently characterized *Echinacea* preparations. Thus, with the present knowledge it is not possible to make a final statement on the therapeutic role of alkamides, but it is quite likely that they are relevant constituents of *Echinacea*.

References

