Synlett 2007(10): 1619-1621  
DOI: 10.1055/s-2007-980381
LETTER
© Georg Thieme Verlag Stuttgart · New York

Rapid Access to in Situ Generated (R)- and (S)-2-Furyloxirane and Associated Regioselective Nucleophilic Ring-Opening Studies

Achim Porzellea, Victoria A. Gordonb, Craig M. Williams*a
a School of Molecular and Microbial Sciences, University of Queensland, Brisbane, 4072, Queensland, Australia
Fax: +61(7)33654299; e-Mail: c.williams3@uq.edu.au;
b EcoBiotics Limited, PO Box 1, Yungaburra, Queensland, 4884, Australia
Further Information

Publication History

Received 23 March 2007
Publication Date:
06 June 2007 (online)

Abstract

Reported herein is the facile preparation of (R)- and (S)-2-furyloxirane from d- and l-tri-O-acetyl glucal and associated ­regioselective nucleophilic ring-opening studies.

    References and Notes

  • 1a Merten J. Fröhlich R. Metz P. Angew. Chem. Int. Ed.  2004,  43:  5991 
  • 1b Merten J. Hennig A. Schwab P. Fröhlich R. Tokalov SV. Gutzeit HO. Metz P. Eur. J. Org. Chem.  2006,  1144 
  • 2 Hamada T. Torii T. Izawa K. Ikariya T. Tetrahedron  2004,  60:  7411 
  • 3a Hayashi M. Kawabata H. Yamada K. Chem. Commun.  1999,  965 
  • 3b Babu BS. Balasubramanian KK. J. Org. Chem.  2000,  65:  4198 
  • 3c Agarwal A. Rani S. Vankar YD. J. Org. Chem.  2004,  69:  6137 
  • 3d Yadav JS. Reddy BVS. Madhavi AV. J. Mol. Catal. A: Chem.  2005,  226:  213 
  • 5 Yamaguchi Y. Tatsuta N. Haykawa K. Kanematsu K. J. Chem. Soc., Chem. Commun.  1989,  470 
  • 9 Tannis SP. Evans BR. Nieman JA. Parker TT. Taylor WD. Heasley SE. Herrinton PM. Perrault WR. Hohler RA. Dolak LA. Hester MR. Seest EP. Tetrahedron: Asymmetry  2006,  17:  2154 
  • Peracetylation with Ac2O/pyridine, formation of the l-glucosyl bromide with HBr/AcOH followed by elimination with zinc dust achieved 53% overall yield. Following the procedure for l-galactal:
  • 10a Litjens REJN. den Heeten R. Timmer MSM. Overkleeft HS. van der Marel GA. Chem. Eur. J.  2005,  11:  1010 
  • 10b

    Tri-O-acetyl-l-glucal: [α]D 20 +23.4 (c 1.01, CHCl3). 1H NMR (300 MHz, CDC13): δ = 6.45 (d, 1 H, J = 6.1 Hz), 5.34-5.30 (m, 1 H), 5.20 (t, 1 H, J = 6.5 Hz), 4.83 (dd, 1 H, J = 6.2, 3.2 Hz), 4.38 (dd, 1 H, J = 11.7, 6.2 Hz), 4.26-4.15 (m, 2 H), 2.08 (s, 3 H), 2.06 (s, 3 H), 2.03 (s, 3 H) ppm. 13C NMR (75 MHz, CDC13): δ = 170.4, 170.2, 169.4, 145.5, 98.9, 73.8, 67.3, 67.1, 53.3, 20.8, 20.6, 20.6 ppm.

  • 11a Alcaide B. Areces P. Borredon E. Biurrun C. Castells JP. Plumet J. Heterocycles  1990,  31:  1997 
  • 11b Oh KB. Cha JH. Cho YS. Choi KI. Koh HY. Chang MH. Pae AN. Tetrahedron Lett.  2003,  44:  2911 
  • 12a Alcaide B. Biurrun C. Plumet J. Tetrahedron  1992,  48:  9719 
  • 12b Sutowardoyo KI. Emziane M. Lhoste P. Sinou D. Tetrahedron  1991,  47:  1435 
  • 13 Smith AB. Xian M. J. Am. Chem. Soc.  2006,  128:  66 
  • 15 The product from this reaction has been previously characterized; our data agree with the previously published: Blake AJ. Cunningham A. Ford A. Teat SJ. Woodward S. Chem. Eur. J.  2000,  6:  3586 
4

Although d-glucal is commercially available for large-scale reactions, the use of the cheaper peracetyl derivative is recommended.

6

Synthesis of ( R )-1-(Furan-2-yl)ethane-1,2-diol ( 3)
A catalytic amount of NaOMe was added to a solution of 4 (5.44 g, 20 mmol) in MeOH (20 mL) and stirred for 4 h at r.t. After evaporation of the solvent the resulting syrup was dissolved in MeCN (20 mL) and FeCl3·6H2O (270 mg, 1 mmol) was added. Usually the reaction is complete within 1 h. The whole reaction mixture was subjected to column chromatography on silica (PE-EtOAc = 1:2, R f = 0.3) to obtain 2.1 g (82%).

7

Synthesis of Compound 6
To a solution of 3 (2.1 g, 16.3 mmol) in pyridine (20 mL) was added TsCl (3.83 g, 20.6 mmol) and the reaction mixture was stirred over night at r.t. The whole mixture was poured onto a slurry of ice (300 mL) and concd HCl ( ca. 10 mL). The resulting mixture was extracted with Et2O (200 mL) and the organic layer was washed with sat. NaHCO3 solution (50 mL), H2O (50 mL) and brine (50 mL). The organic layer was dried (MgSO4) and concentrated to approx. 60 mL. The so-prepared solution was used without further purification, but stored in the fridge over 4 Å MS (0.14 M); [α]D 20 +36.7 (c 4.01, Et2O). 1H NMR (300 MHz, CDC13): δ = 7.79-7.75 (m, 2 H), 7.35-7.31 (m, 3 H), 6.32-6.30 (m, 2 H), 4.95 (dd, 1 H, J = 4.4, 7.0 Hz), 4.31-4.19 (m, 2 H), 2.65 (br s, OH), 2.44 (s, 3 H), ppm. 13C NMR (75 MHz, CDC13): δ = 151.4, 145.1, 142.6, 132.5, 129.9, 128.0, 110.4, 107.9, 71.4, 65.9, 21.6 ppm. MS (ESI): m/z = 305 [M + N]+. HRMS: m/z calcd for C13H14NaO5S: 305.0460; found: 305.0467. Note: Tosylate 6 is stable in solution and on silica gel, however, if concentrated at elevated temperatures (40-50 °C) rapid polymerization occurs affording a dark-green gum. Analytical samples were obtained after column chromatography, concentration at 20 °C and finally evaporation of the remaining solvent under high vacuum. Compound 6 is stable under argon for several hours in pure form.

8

For other 2-furyloxirane precursors, such as 2-chlorofuryl alcohols, sensitivity towards amines has been reported, [3a] [9] whereas tosylate 6 is stable in the presence of benzylamine and even thioethane at r.t. as observed over 96 h.

14

Representative Experimental Procedure and Characterization Data for Selected Compounds
To a solution of 6 (5.0 mL, 0.71 mmol, 0.14 M) in Et2O [7] was added NaH (2 equiv, 60 mg, 60% in mineral oil) under an argon atmosphere at r.t. After 30 min a solution of Li-TBS-dithiane [13] (1.2 equiv) in anhyd THF (2 mL) containing HMPA (0.7 mL) was added at r.t. The reaction was quenched after 2 h with sat. NH4Cl solution (10 mL) and extracted with Et2O (20 mL). The organic layer was washed with H2O (10 mL), brine (10 mL), dried (MgSO4), and evaporated. The residue was further purified by column chromatography on silica gel (PE-EtOAc, 50:1) affording 8 (122 mg, 50%; R f = 0.5) and 9 (81 mg, 33%; R f = 0.41).
Compound 8: [α]D 20 +77.0 (c 0.5, CHCl3). 1H NMR (300 MHz, CDC13): δ = 7.34-7.32 (m, 1 H), 6.30-6.27 (m, 1 H), 6.19-6.17 (m, 1 H), 4.96 (dd, J = 8.9, 4.8 Hz, 1 H), 4.07 (dd, J = 9.3, 5.4 Hz, 1 H), 2.86-2.75 (m, 4 H), 2.34-2.23 (m, 1 H), 2.16-2.06 (m, 2 H), 1.94-1.84 (m, 1 H), 0.85 (s, 9 H), 0.06 (s, 3 H), -0.11 (s, 3 H) ppm. 13C NMR (75 MHz, CDC13): δ = 156.1, 141.6, 110.0, 106.3, 64.8, 43.4, 42.2, 30.1, 29.6, 26.0, 25.8, 18.2, -5.0, -5.2 ppm. ESI-MS: m/z = 367 [M + Na+]. The ee determination by derivatization unfortunately resulted in elimination giving 19.
Compound 9: 1H NMR (300 MHz, CDC13): δ = 7.36-7.34 (m, 1 H), 6.32-6.30 (m, 1 H), 6.24-6.22 (m, 1 H), 4.45 (d, J = 6.5 Hz, 1 H), 4.03 (dd, J = 9.9, 6.5 Hz, 1 H), 3.90 (dd, J = 9.9, 6.5 Hz, 1 H), 3.29 (td, J = 6.5, 6.5 Hz, 1 H), 2.88-2.82 (m, 4 H), 0.85 (s, 9 H), 0.02 (s, 3 H), -0.01 (s, 3 H) ppm. 13C NMR (75 MHz, CDC13): δ = 152.6, 141.3, 110.2, 108.1, 62.3, 48.6, 46.8, 30.7, 30.5, 29.7, 25.8, 18.2, -5.5 ppm. ESI-MS: m/z = 367 [M + Na+].
NMR Data of Selected Compounds
Compound 10: [α]D 20 +15.5 (c 4.02, CHCl3). 1H NMR (400 MHz, CDC13): δ = 7.37-7.35 (m, 1 H), 6.32-6.30 (m, 1 H), 6.26-6.24 (m, 1 H), 5.01 (dd, J = 8.9, 4.6, 1 H), 4.17 (dd, J = 8.8, 5.8 Hz, 1 H), 2.91-2.78 (m, 4 H), 2.36-2.20 (m, 2 H), 2.15-2.05 (m, 2 H), 1.95-1.80 (m, 2 H) ppm. 13C NMR (100 MHz, CDC13): δ = 155.5, 142.3, 110.2, 106.3, 64.7, 43.3, 40.8, 29.9, 29.7, 25.9 ppm. ESI-MS: m/z = 253 [M + Na+].
Compound 13: [α]D 20 -19.8 (c 0.5, CHCl3). 1H NMR (300 MHz, CDC13): δ = 7.33-7.32 (m, 1 H), 6.30-6.28 (m, 1 H), 6.09-6.07 (m, 1 H), 3.72 (br d, J = 6.2 Hz, 2 H), 2.87 (app quin, J = 5.4 Hz, 1 H), 1.65-1.57 (m, 2 H), 1.53 (br s, OH), 1.34-1.19 (m, 4 H), 0.85 (t, J = 7.0 Hz, 3 H) ppm. 13C NMR (75 MHz, CDC13): δ = 156.3, 141.4, 110.0, 106.2, 65.2, 42.1, 29.7, 29.4, 22.6, 13.9 ppm.
Compound 18: 1H NMR (300 MHz, CDC13): δ = 7.37-7.36 (m, 1 H), 6.33-6.31 (m, 1 H), 6.24-6.22 (m, 1 H), 4.07-4.02 (m, 1 H), 4.00-3.91 (m, 1 H), 3.88-3.80 (m, 1 H), 2.56-2.44 (m, 2 H), 1.20 (t, J = 7.4 Hz, 3 H) ppm. 13C NMR (125 MHz, CDC13): δ = 152.8, 142.3, 110.4, 107.4, 63.0, 45.6, 24.7, 14.8 ppm.