Synlett 2007(9): 1431-1435  
DOI: 10.1055/s-2007-980368
LETTER
© Georg Thieme Verlag Stuttgart · New York

Novel Solid-Phase Synthetic Method for Combinatorial Generation of a 4-Hydroxyquinolin-2(1H)-one-Based Library

Moon-Kook Jeona, Hyun Ju Laa,b, Deok-Chan Hab, Young-Dae Gong*a
a Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, South Korea
Fax: +82(42)8607698; e-Mail: ydgong@krict.re.kr;
b Department of Chemistry, Korea University, Seoul 151-742, South Korea
Further Information

Publication History

Received 19 March 2007
Publication Date:
23 May 2007 (online)

Abstract

Utilizing polymer-bound anthranilic acid derivatives, we were able to obtain 4-hydroxyquinolin-2(1H)-ones in 50-99% five- or six-step overall yields and 65-95% purities through the adaptation of a Dieckmann-type condensation reaction to a C-C bond-forming cyclative cleavage step. The reactions on solid phase were monitored by on-bead ATR-FTIR spectroscopic methods, colorimetric tests, and/or cleavage experiments.

    References and Notes

  • 1 Dolle RE. Le Bourdonnec B. Morales GA. Moriarty KJ. Salvino JM. J. Comb. Chem.  2006,  8:  597 
  • 2a Gordon EM. Gallop MA. Patel DV. Acc. Chem. Res.  1996,  29:  144 
  • 2b Tempest PA. Armstrong RW. J. Am. Chem. Soc.  1997,  119:  7607 
  • 2c Ding S. Gray NS. Wu X. Ding Q. Schultz PG. J. Am. Chem. Soc.  2002,  124:  1594 
  • 2d Burke MD. Schreiber SL. Angew. Chem. Int. Ed.  2004,  43:  46 
  • 2e Marzinzik AL. Felder ER. J. Org. Chem.  1998,  63:  723 
  • 3a Jeon M.-K. Kim D.-S. La HJ. Ha D.-C. Gong Y.-D. Tetrahedron Lett.  2005,  46:  7477 
  • 3b Jeon M.-K. Kim D.-S. La HJ. Gong Y.-D. Tetrahedron Lett.  2005,  46:  4979 
  • 4a Rowley M. Kulagowski JJ. Watt AP. Rathbone D. Stevenson GI. Carling RW. Baker R. Marshall GR. Kemp JA. Foster AC. Grimwood S. Hargreaves R. Hurley C. Saywell KL. Tricklebank MD. Leeson PD. J. Med. Chem.  1997,  40:  4053 
  • 4b Hayashi H. Miwa Y. Ichikawa S. Yoda N. Miki I. Ishii A. Kono M. Yasuzawa T. Suzuki F. J. Med. Chem.  1993,  36:  617 
  • 4c DeVita RJ. Walsh TF. Young JR. Jiang J. Ujjainwalla F. Toupence RB. Parikh M. Huang SX. Fair JA. Goulet MT. Wyvratt MJ. Lo J.-L. Ren N. Yudkovitz JB. Yang YT. Cheng K. Cui J. Mount G. Rohrer SP. Schaeffer JM. Rhodes L. Drisko JE. McGowan E. MacIntyre DE. Vincent S. Carlin JR. Cameron J. Smith RG. J. Med. Chem.  2001,  44:  917 
  • 4d Khan SR. Mhaka A. Pili R. Isaacs JT. Bioorg. Med. Chem. Lett.  2001,  11:  451 
  • 4e Tsuji K. Spears GW. Nakamura K. Tojo T. Seki N. Sugiyama A. Matsuo M. Bioorg. Med. Chem. Lett.  2002,  12:  85 
  • For examples, see:
  • 5a Laschober R. Stadlbauer W. Liebigs Ann. Chem.  1990,  1083 
  • 5b Lange JHM. Verveer PC. Osnabrug SJM. Visser GM. Tetrahedron Lett.  2001,  42:  1367 
  • 5c Xiao Z. Waters NC. Woodard CL. Li Z. Li P.-K. Bioorg. Med. Chem. Lett.  2001,  11:  2875 
  • For examples, see:
  • 6a Ukrainets IV. Taran SG. Gorokhova OV. Kodolova OL. Turov AV. Khim. Geterotsikl. Soedin  1997,  33:  928 
  • 6b Kulkarni BA. Ganesan A. Chem. Commun.  1998,  785 
  • 6c DeVita RJ. Goulet MT. Wyvratt MJ. Fisher MH. Lo J.-L. Yang YT. Cheng K. Smith RG. Bioorg. Med. Chem. Lett.  1999,  9:  2621 
  • 6d Walsh TF. Toupence RB. Young JR. Huang SX. Ujjainwalla F. DeVita RJ. Goulet MT. Wyvratt MJ. Fisher MH. Lo J.-L. Ren N. Yudkovitz JB. Yang YT. Cheng K. Smith RG. Bioorg. Med. Chem. Lett.  2000,  10:  443 
  • 6e Spears GW. Tsuji K. Tojo T. Nishimura H. Ogino T. J. Heterocycl. Chem.  2002,  39:  799 
  • For examples, see:
  • 7a Ismaili L. Refouvelet B. Robert JF. J. Heterocycl. Chem.  1999,  36:  719 
  • 7b Tojo T. Spears GW. Tsuji K. Nishimura H. Ogino T. Seki N. Sugiyama A. Matsuo M. Bioorg. Med. Chem. Lett.  2002,  12:  2427 
  • 7c Mitsos CA. Zografos AL. Igglessi-Markopoulou O. J. Org. Chem.  2003,  68:  4567 
  • 8a Borowiec H. Grochowski J. Serda P. J. Chem. Res., Synop.  1996,  248 
  • 8b El Kihel A. Benchidmi M. Essassi EM. Bauchat P. Danion-Bougot R. Synth. Commun.  1999,  29:  2435 
  • 8c Jung J.-C. Jung Y.-J. Park O.-S. Synth. Commun.  2001,  31:  1195 
  • 8d Jung J.-C. Jung Y.-J. Park O.-S. J. Heterocycl. Chem.  2001,  38:  61 
  • 9a Sim MM. Lee CL. Ganesan A. Tetrahedron Lett.  1998,  39:  6399 
  • 9b Xu C. Yang L. Bhandari A. Holmes CP. Tetrahedron Lett.  2006,  47:  4885 : The recent report described the solid-phase synthesis of 3-carbomethoxy-4-hydoxyquinolin-2(1H)-one bound to a resin through the bonding to nitrogen at 1-position as an intermediate resin for introduction of carbon-based substituents at 4-position of quinolin-2(1H)-one skeleton
  • In addition to commercially available 2-nitrobenzoic acids, they can be prepared from the regioselective nitration of benzoic acids, the oxidation of o-nitrotoluenes, 2-nitrobenzyl alcohols, 2-nitrobenzaldehydes, and 2′-nitroacetophenones, and the substitutions of halogenated 2-nitrobenzoic acids. On the other hand, variation of the X group would be possible for the resin-bound 2-nitrobenzoic acid derivatives 6 and will be reported elsewhere. For examples of the nitration, see ref. 8d and:
  • 10a Coppola GM. Schuster HF. J. Heterocycl. Chem.  1989,  26:  957 
  • 10b Cotelle P. Catteau JP. Synth. Commun.  1996,  26:  4105 
  • 10c Thurston DE. Bose DS. Thompson AS. Howard PW. Leoni A. Croker SJ. Jenkins TC. Neidle S. Hartley JA. Hurley LH. J. Org. Chem.  1996,  61:  8141 
  • 10d Gregson SJ. Howard PW. Thurston DE. Bioorg. Med. Chem. Lett.  2003,  13:  2277 
  • For examples of the oxidation, see:
  • 10e Yamazaki S. Synth. Commun.  1999,  29:  2211 
  • 10f Sawatari N. Sakaguchi S. Ishii Y. Tetrahedron Lett.  2003,  44:  2053 
  • 10g Venturello C. Cambaro M. J. Org. Chem.  1991,  56:  5924 
  • 10h Singh M. Singh KN. Dwivedi S. Misra RA. Synthesis  1991,  291 
  • 10i Das S. Punniyamurthy T. Tetrahedron Lett.  2003,  44:  6033 
  • 10j De Luca L. Giacomelli G. Masala S. Porcheddu A. J. Org. Chem.  2003,  68:  4999 
  • 10k Madler MM. Klucik J. Soell PS. Brown CW. Liu S. Berlin KD. Benbrook DM. Birckbichler PJ. Nelson EC. Org. Prep. Proced. Int.  1998,  30:  230 
  • 10l Roy A. Reddy KR. Mohanta PK. Ila H. Junjappa H. Synth. Commun.  1999,  29:  3781 
  • 10m Anjum A. Srinivas P. Chem. Lett.  2001,  900 
  • 10n Balicki R. Synth. Commun.  2001,  31:  2195 
  • 10o

    For an example of the substitution, see ref. 4e.

  • 11 Yan B. Acc. Chem. Res.  1998,  31:  621 
  • With respect to acylation of N-alkylanthranilates with acetic acids, the conditions used in solution phase were pivaloyl chloride, pyridine, and MS in CH2Cl2 at r.t. for coupling of 2-methylaminobenzoates with thiocarbamoylacetic acids,6e EDC in THF at r.t. for reaction of 2-methylaminobenzoates with mono-tert-butyl malonate and cyanoacetic acid, and in POCl3 at 80 °C for the reaction of benzyl 2-benzylamino-benzoate and (3-methylisoxazol-5-yl)acetic acid. See:
  • 12a Blackburn C. LaMarche MJ. Brown J. Che JL. Cullis CA. Lai S. Maguire M. Marsilje T. Geddes B. Govek E. Kadambi V. Doherty C. Brian D. Brodjian S. Marsh KC. Collins CA. Kym PR. Bioorg. Med. Chem. Lett.  2006,  16:  2621 
  • 12b Wall MJ, Player MR, Patch RJ, Meegalla S, Liu J, Illig CR, Cheung W, Chen J, and Asgari D. inventors; WO  2005009967.  ; Chem. Abstr. 2005, 142, 197893
  • 13 Gaggini F. Porcheddu A. Reginato G. Rodriquez M. Taddei M. J. Comb. Chem.  2004,  6:  805 
  • Since the seminal contributions of Rapoport to the solid-phase unidirectional Dieckmann reaction, Dieckmann-type condensation reaction has been utilized for the solid-phase synthesis of tetramic acid derivatives. See:
  • 14a Crowley JI. Rapoport H. J. Am. Chem. Soc.  1970,  92:  6363 
  • 14b Crowley JI. Rapoport H. J. Org. Chem.  1980,  45:  3215 
  • 14c Matthews J. Rivero RA. J. Org. Chem.  1998,  63:  4808 
  • 14d Weber L. Iaiza P. Biringer G. Barbier P. Synlett  1998,  1156 
  • 14e Romoff TT. Ma L. Wang Y. Campbell DA. Synlett  1998,  1341 
  • 14f Kulkarni BA. Ganesan A. Tetrahedron Lett.  1998,  39:  4369 
  • 14g Fitch DM. Evans KA. Chai D. Duffy KJ. Org. Lett.  2005,  7:  5521 
  • 14h Evans KA. Chai D. Graybill TL. Burton G. Sarisky RT. Lin-Goerke J. Johnston VK. Rivero RA. Bioorg. Med. Chem. Lett.  2006,  16:  2205 
  • 15 For a recent review on cyclative cleavage strategy, see: Pernerstorfer J. In Combinatorial Chemistry   Bannwarth W. Hinzen B. Wiley-VCH; Weinheim: 2006.  p.111-142  
  • 18a Kafka S. Klkgek A. Polis J. Komrlj J. Heterocycles  2002,  57:  1659 
  • 18b Stadlbauer W. Laschober R. Lutschounig H. Schindler G. Kappe T. Monatsh. Chem.  1992,  123:  617 
  • 18c Bowman RE. Grey TF. Huckle D. Lockhart IM. Wright M. J. Chem. Soc.  1964,  3350 
  • 18d Ziegler E. Kappe T. Monatsh. Chem.  1963,  94:  736 
16

Another reason for selection of KHMDS as a standard base was the known favorable character of potassium enolates for O-alkylation, which is needed to obtain the 4-alkoxy derivatives in high purities through a subsequent in situ alkylation of the cleaved products. The study on the efficient alkylation is in progress using polymer-supported alkylating agents and will be reported elsewhere.

17

Representative Procedure for Preparation of Compounds 9
Preparation of 2-Benzylaminobenzoate Resin (7a; X = H, R ¹ = Ph)
To a mixture of the resin 1a (X = H; 4.00 g, theoretically 3.59 mmol), prepared from Wang resin (1.00 mmol/g), and benzaldehyde (1.14 g, 10.8 mmol) in DCE (60 mL) at r.t. was added NaBH(OAc)3 (2.28 g, 10.8 mmol). The mixture was stirred at r.t. for 12 h and the resin was filtered, washed several times with CH2Cl2, DMF, MeOH, H2O, and MeOH, and dried in a vacuum oven to give 7a (4.30 g, 99%): on-bead ATR-FTIR: 3365 (NH), 3025, 2922, 1680 (C=O), 1602, 1581, 1512, 1492, 1451, 1221, 1172, 1097, 822, 750, 697 cm-1.
Preparation of 2-{Benzyl[3-(4-methoxyphenyl)acet-yl]amino}benzoate Resin (8a; X = H, R ¹ = Ph, R ² = 4-MeOC 6 H 4 )
To a mixture of the resin 7a (X = H, R1 = Ph; 1.00 g, theoretically 0.830 mmol) and 4-methoxyphenylacetic acid (413 mg, 2.49 mmol) in CH2Cl2 (30 mL) at r.t. was added pyridine (391 mg, 4.98 mmol) and phosphorus oxychloride (385 mg, 2.49 mmol). The mixture was stirred at r.t. for 2 h and the resin was filtered, washed several times with CH2Cl2, DMF, MeOH, H2O, and MeOH, and dried in a vacuum oven to give 8a (1.09 g, 97%): on-bead ATR-FTIR: 3026, 2921, 1719 (O-C=O), 1662 (N-C=O), 1605, 1510, 1492, 1448, 1380, 1243, 1176, 1078, 1025, 822, 755, 697 cm-1.
Preparation of 1-Benzyl-4-hydroxy-3-(4-methoxy-phenyl)-1 H -quinolin-2-one (9a; X = H, R ¹ = Ph, R ² = 4-MeOC 6 H 4 )
To a suspension of the resin 8a (X = H, R1 = Ph, R2 = 4-MeOC6H4; 100 mg, theoretically 0.0739 mmol) in THF (3 mL) at r.t. was added 0.5 M KHMDS in toluene (0.440 mL, 0.227 mmol) and the mixture was stirred at r.t. for 6 h. The mixture was filtered and washed with MeOH (about 10 mL). The filtrate was evaporated in vacuo, acidified to pH 4-5 with 3 N HCl, and extracted with EtOAc (2 × 3 mL). The organic layer was dried over MgSO4. The solvent was evaporated in vacuo and the residue (18 mg, 68%; 91% purity on the basis of LC-UV-MS spectrum) was purified by a silica gel column chromatography (n-hexane-EtOAc, 2:1) to afford 9a (14 mg, 53%; 99% purity on the basis of LC-UV-MS spectrum): 1H NMR (500 MHz, CDCl3): δ = 3.86 (s, 3 H), 5.56 (br s, 2 H), 7.05 (d, J = 8.7 Hz, 2 H), 7.20-7.23 (m, 2 H), 7.25-7.31 (m, 5 H), 7.43-7.47 (m, 3 H), 8.04 (dd, J = 8.0, 1.3 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 46.2, 55.4 111.2, 114.8, 115.0, 115.7, 121.9, 123.4, 124.1, 126.8, 127.2, 128.7, 131.1, 132.0, 137.0, 138.8, 156.0, 159.8, 162.8. ESI-MS: m/z = 358 [M + H]+.