Semin Liver Dis 2007; 27(2): 173-193
DOI: 10.1055/s-2007-979470
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

The Role of Cytokines and Chemokines in the Development of Steatohepatitis

Patricia F. Lalor1 , Jeff Faint1 , York Aarbodem1 , Stefan G. Hubscher1 , David H. Adams1
  • 1Liver Research Group, MRC Centre for Immune Regulation, Institute of Biomedical Research, University of Birmingham Medical School, Birmingham, United Kingdom
Further Information

Publication History

Publication Date:
22 May 2007 (online)

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) share similar morphological characteristics despite the obvious etiological differences between the two conditions. In both conditions the first manifestation of injury is the accumulation of fat within hepatocytes (steatosis), and in a proportion of patients this is followed by the development of necroinflammatory activity that leads to cirrhosis. Steatosis alone is considered to be relatively innocuous and is usually reversible, and it is the development of liver cell ballooning and inflammation (steatohepatitis) that determines whether a patient progresses to irreversible liver damage and fibrosis. This has led to the two-hit theory in which the first hit is accumulation of fat in the liver and the second hit involves an inflammatory insult or challenge to the liver, for example, through oxidative stress or in response to pathogenic stimuli such as endotoxin. Although the nature of the hits remains poorly understood, it is clear that the critical event in progression is the development of inflammation, and the fact that it is impossible to distinguish alcoholic from nonalcoholic steatohepatitis on histological grounds suggests that common pathogenic mechanisms are involved. We focus on the role of cytokines and particularly chemokines in instigating and driving the inflammatory infiltrate in steatohepatitis. A better understanding of this process might allow therapeutic intervention to switch off the inflammatory response before irreversible damage occurs in both ALD and NAFLD.

REFERENCES

  • 1 Kojima H, Sakurai S, Uemura M et al.. Difference and similarity between non-alcoholic steatohepatitis and alcoholic liver disease.  Alcohol Clin Exp Res. 2005;  29 259S-263S
  • 2 Farrell G C, Larter C Z. Nonalcoholic fatty liver disease: from steatosis to cirrhosis.  Hepatology. 2006;  43 S99-S112
  • 3 Clark J M. The epidemiology of nonalcoholic fatty liver disease in adults.  J Clin Gastroenterol. 2006;  40(suppl 1) S5-S10
  • 4 Day C P. From fat to inflammation.  Gastroenterology. 2006;  130 207-210
  • 5 Lieber C S. Alcoholic liver disease: new insights in pathogenesis lead to new treatments.  J Hepatol. 2000;  32 113-128
  • 6 Molina P E, McClain C, Valla D et al.. Molecular pathology and clinical aspects of alcohol-induced tissue injury.  Alcohol Clin Exp Res. 2002;  26 120-128
  • 7 Lumeng L, Crabb D W. Genetic aspects and risk factors in alcoholism and alcoholic liver disease.  Gastroenterology. 1994;  107 572-588
  • 8 Harrison S A, Diehl A M. Fat and the liver: a molecular overview.  Semin Gastrointest Dis. 2002;  13 3-16
  • 9 Yang S, Lin H, Diehl A M. Fatty liver vulnerability to endotoxin-induced damage despite NF-kappaB induction and inhibited caspase 3 activation.  Am J Physiol Gastrointest Liver Physiol. 2001;  281 G382-G392
  • 10 Day C P. Natural history of NAFLD: remarkably benign in the absence of cirrhosis.  Gastroenterology. 2005;  129 375-378
  • 11 Adams L A, Angulo P. Recent concepts in non-alcoholic fatty liver disease.  Diabet Med. 2005;  22 1129-1133
  • 12 Reddy J K, Rao M S. Lipid metabolism and liver inflammation: II. Fatty liver disease and fatty acid oxidation.  Am J Physiol Gastrointest Liver Physiol. 2006;  290 G852-G858
  • 13 McCullough A J. Pathophysiology of nonalcoholic steatohepatitis.  J Clin Gastroenterol. 2006;  40 S17-S29
  • 14 Feldstein A E, Werneburg N W, Canbay A et al.. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway.  Hepatology. 2004;  40 185-194
  • 15 Feldstein A E, Gores G J. Apoptosis in alcoholic and nonalcoholic steatohepatitis.  Front Biosci. 2005;  10 3093-3099
  • 16 Mari M, Caballero F, Colell A et al.. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis.  Cell Metab. 2006;  4 185-198
  • 17 Mundt B, Wirth T, Zender L et al.. Tumour necrosis factor related apoptosis inducing ligand (TRAIL) induces hepatic steatosis in viral hepatitis and after alcohol intake.  Gut. 2005;  54 1590-1596
  • 18 Bradbury M W. Lipid metabolism and liver inflammation: I. Hepatic fatty acid uptake: possible role in steatosis.  Am J Physiol Gastrointest Liver Physiol. 2006;  290 G194-G198
  • 19 Leclercq I A, Farrell G C, Field J, Bell D R, Gonzalez F J, Robertson G R. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis.  J Clin Invest. 2000;  105 1067-1075
  • 20 Robertson G, Leclercq I, Farrell G C. Nonalcoholic steatosis and steatohepatitis: II. Cytochrome P-450 enzymes and oxidative stress.  Am J Physiol Gastrointest Liver Physiol. 2001;  281 G1135-G1139
  • 21 Hubscher S G. Histological assessment of non-alcoholic fatty liver disease.  Histopathology. 2006;  49 450-465
  • 22 Falck-Ytter Y, Younossi Z M, Marchesini G, McCullough A J. Clinical features and natural history of nonalcoholic steatosis syndromes.  Semin Liver Dis. 2001;  21 17-26
  • 23 Chedid A, Mendenhall C L, Gartside P, French S W, Chen T, Rabin L. Prognostic factors in alcoholic liver disease. The VA Cooperative Study Group.  Am J Gastroenterol. 1991;  86 210-216
  • 24 Wanless I R, Shiota K. The pathogenesis of nonalcoholic steatohepatitis and other fatty liver diseases: a four-step model including the role of lipid release and hepatic venular obstruction in the progression to cirrhosis.  Semin Liver Dis. 2004;  24 99-106
  • 25 French S W, Nash J, Shitabata P et al.. Pathology of alcoholic liver disease. The VA Cooperative Group.  Semin Liver Dis. 1993;  13 154-169
  • 26 Day C P. Who gets alcoholic liver disease: nature or nurture'.  J R Coll Physicians Lond. 2000;  34 557-562
  • 27 Aloisi F, Pujol-Borrell R. Lymphoid neogenesis in chronic inflammatory diseases.  Nat Rev Immunol. 2006;  6 205-217
  • 28 Savill J, Dransfield I, Gregory C, Haslett C. A blast from the past: clearance of apoptotic cells regulates immune responses.  Nat Rev Immunol. 2002;  2 965-975
  • 29 Crispe I N. Hepatic T cells and liver tolerance.  Nat Rev Immunol. 2003;  3 51-62
  • 30 Mehal W Z, Juedes A E, Crispe I N. Selective retention of activated CD8 + T cells by the normal liver.  J Immunol. 1999;  163 3202-3210
  • 31 Adams D H, Eksteen B. Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease.  Nat Rev Immunol. 2006;  6 244-251
  • 32 Klugewitz K, Adams D H, Emoto M, Eulenburg K, Hamann A. The composition of intrahepatic lymphocytes: shaped by selective recruitment'.  Trends Immunol. 2004;  25 590-594
  • 33 International Group . Alcoholic liver disease: morphological manifestations.  Lancet. 1981;  1 707-771
  • 34 Bonder C S, Ajuebor M N, Zbytnuik L D, Kubes P, Swain M G. Essential role for neutrophil recruitment to the liver in concanavalin A-induced hepatitis.  J Immunol. 2004;  172 45-53
  • 35 Jaeschke H. Neutrophil-mediated tissue injury in alcoholic hepatitis.  Alcohol. 2002;  27 23-27
  • 36 Natori S, Rust C, Stadheim L M, Srinivasan A, Burgart L J, Gores G J. Hepatocyte apoptosis is a pathologic feature of human alcoholic hepatitis.  J Hepatol. 2001;  34 248-253
  • 37 Taieb J, Mathurin P, Elbim C et al.. Blood neutrophil functions and cytokine release in severe alcoholic hepatitis: effect of corticosteroids.  J Hepatol. 2000;  32 579-586
  • 38 Maltby J, Wright S, Bird G, Sheron N. Chemokine levels in human liver homogenates: associations between gro alpha and histopathological evidence of alcoholic hepatitis.  Hepatology. 1996;  24 1156-1160
  • 39 Burra P, Hubscher S G, Shaw J, Elias E, Adams D H. Is the intercellular adhesion molecule-1/leukocyte function associated antigen 1 pathway of leukocyte adhesion involved in the tissue damage of alcoholic hepatitis'.  Gut. 1992;  33 268-271
  • 40 Hui A Y, Friedman S L. Molecular basis of hepatic fibrosis.  Expert Rev Mol Med. 2003;  2003 1-23
  • 41 Tsukamoto H, Lu S C. Current concepts in the pathogenesis of alcoholic liver injury.  FASEB J. 2001;  15 1335-1349
  • 42 Stewart S F, Vidali M, Day C P, Albano E, Jones D E. Oxidative stress as a trigger for cellular immune responses in patients with alcoholic liver disease.  Hepatology. 2004;  39 197-203
  • 43 Chedid A, Mendenhall C L, Moritz T E et al.. Cell-mediated hepatic injury in alcoholic liver disease. Veterans Affairs Cooperative Study Group 275.  Gastroenterology. 1993;  105 254-266
  • 44 Haydon G, Lalor P F, Hubscher S G, Adams D H. Lymphocyte recruitment to the liver in alcoholic liver disease.  Alcohol. 2002;  27 29-36
  • 45 Adams D H, Afford S C. Effector mechanisms of nonsuppurative destructive cholangitis in graft-versus-host disease and allograft rejection.  Semin Liver Dis. 2005;  25 281-297
  • 46 Afford S C, Randhawa S, Eliopoulos A G, Hubscher S G, Young L S, Adams D H. CD40 activation induces apoptosis in cultured human hepatocytes via induction of cell surface fas ligand expression and amplifies fas-mediated hepatocyte death during allograft rejection.  J Exp Med. 1999;  189 441-446
  • 47 Galle P R, Hofmann W J, Walczak H et al.. Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage.  J Exp Med. 1995;  182 1223-1230
  • 48 Friedman S L. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury.  J Biol Chem. 2000;  275 2247-2250
  • 49 Cassiman D, Libbrecht L, Desmet V, Denef C, Roskams T. Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers.  J Hepatol. 2002;  36 200-209
  • 50 Buckley C D, Pilling D, Lord J M, Akbar A N, Scheel-Toellner D, Salmon M. Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation.  Trends Immunol. 2001;  22 199-204
  • 51 Parsonage G, Filer A D, Haworth O et al.. A stromal address code defined by fibroblasts.  Trends Immunol. 2005;  26 150-156
  • 52 Iredale J P, Benyon R C, Pickering J et al.. Mechanisms of spontaneous resolution of rat liver fibrosis: hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors.  J Clin Invest. 1998;  102 538-549
  • 53 Duffield J S, Forbes S J, Constandinou C M et al.. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair.  J Clin Invest. 2005;  115 56-65
  • 54 Gordon S. Alternative activation of macrophages.  Nat Rev Immunol. 2003;  3 23-35
  • 55 Sandler N G, Mentink-Kane M M, Cheever A W, Wynn T A. Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair.  J Immunol. 2003;  171 3655-3667
  • 56 Novobrantseva T I, Majeau G R, Amatucci A et al.. Attenuated liver fibrosis in the absence of B cells.  J Clin Invest. 2005;  115 3072-3082
  • 57 Safadi R, Ohta M, Alvarez C E et al.. Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic interleukin-10 from hepatocytes.  Gastroenterology. 2004;  127 870-882
  • 58 Wyler D J. Schistosomes, fibroblasts, and growth factors: how a worm causes liver scarring.  New Biol. 1991;  3 734-740
  • 59 Chiaramonte M G, Donaldson D D, Cheever A W, Wynn T A. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response.  J Clin Invest. 1999;  104 777-785
  • 60 Fichtner-Feigl S, Strober W, Kawakami K, Puri R K, Kitani A. IL-13 signaling through the IL-13alpha(2) receptor is involved in induction of TGF-beta(1) production and fibrosis.  Nat Med. 2006;  12 99-106
  • 61 Kremer M, Hines I N, Milton R J, Wheeler M D. Favored T helper 1 response in a mouse model of hepatosteatosis is associated with enhanced T cell-mediated hepatitis.  Hepatology. 2006;  44 216-227
  • 62 Hoffmann K F, McCarty T C, Segal D H et al.. Disease fingerprinting with cDNA microarrays reveals distinct gene expression profiles in lethal type 1 and type 2 cytokine-mediated inflammatory reactions.  FASEB J. 2001;  15 2545-2547
  • 63 Tilg H, Moschen A R. Adipocytokines: mediators linking adipose tissue, inflammation and immunity.  Nat Rev Immunol. 2006;  6 772-783
  • 64 Ikejima K, Takei Y, Honda H et al.. Leptin receptor-mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat.  Gastroenterology. 2002;  122 1399-1410
  • 65 Diehl A M, Li Z P, Lin H Z, Yang S Q. Cytokines and the pathogenesis of non-alcoholic steatohepatitis.  Gut. 2005;  54 303-306
  • 66 Emoto M, Kaufmann S H. Liver NKT cells: an account of heterogeneity.  Trends Immunol. 2003;  24 364-369
  • 67 Ajuebor M N, Aspinall A I, Zhou F et al.. Lack of chemokine receptor CCR5 promotes murine fulminant liver failure by preventing the apoptosis of activated CD1d-restricted NKT cells.  J Immunol. 2005;  174 8027-8037
  • 68 Li Z, Lin H, Yang S, Diehl A M. Murine leptin deficiency alters Kupffer cell production of cytokines that regulate the innate immune system.  Gastroenterology. 2002;  123 1304-1310
  • 69 Elinav E, Pappo O, Sklair-Levy M et al.. Adoptive transfer of regulatory NKT lymphocytes ameliorates non-alcoholic steatohepatitis and glucose intolerance in ob/ob mice and is associated with intrahepatic CD8 trapping.  J Pathol. 2006;  209 121-128
  • 70 Li Z, Oben J A, Yang S et al.. Norepinephrine regulates hepatic innate immune system in leptin-deficient mice with nonalcoholic steatohepatitis.  Hepatology. 2004;  40 434-441
  • 71 Margalit M, Shalev Z, Pappo O et al.. Glucocerebroside ameliorates the metabolic syndrome in OB/OB mice.  J Pharmacol Exp Ther. 2006;  319 105-110
  • 72 Sakaguchi S. Naturally arising CD4 + regulatory T cells for immunologic self-tolerance and negative control of immune responses.  Annu Rev Immunol. 2004;  22 531-562
  • 73 Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3.  Science. 2003;  299 1057-1061
  • 74 Maloy K J, Salaun L, Cahill R, Dougan G, Saunders N J, Powrie F. CD4 + CD25 + T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms.  J Exp Med. 2003;  197 111-119
  • 75 von Herrath M G, Harrison L C. Antigen-induced regulatory T cells in autoimmunity.  Nat Rev Immunol. 2003;  3 223-232
  • 76 Goddard S, Youster J, Morgan E, Adams D H. Interleukin-10 secretion differentiates dendritic cells from human liver and skin.  Am J Pathol. 2004;  164 511-519
  • 77 Eksteen B, Miles A, Curbishley S M et al.. Epithelial inflammation is associated with CCL28 production and the recruitment of regulatory T cells expressing CCR10.  J Immunol. 2006;  177 593-603
  • 78 Accapezzato D, Francavilla V, Paroli M et al.. Hepatic expansion of a virus-specific regulatory CD8( + ) T cell population in chronic hepatitis C virus infection.  J Clin Invest. 2004;  113 963-972
  • 79 Bruder D, Westendorf A M, Geffers R et al.. CD4 T Lymphocyte-mediated lung disease: steady state between pathological and tolerogenic immune reactions.  Am J Respir Crit Care Med. 2004;  170 1145-1152
  • 80 Westendorf A M, Templin M, Geffers R et al.. CD4 + T cell mediated intestinal immunity: chronic inflammation versus immune regulation.  Gut. 2005;  54 60-69
  • 81 von Andrian U H, Mackay C R. T-cell function and migration: two sides of the same coin.  N Engl J Med. 2000;  343 1020-1034
  • 82 Agace W W. Tissue-tropic effector T cells: generation and targeting opportunities.  Nat Rev Immunol. 2006;  6 682-692
  • 83 Middleton J, Patterson A M, Gardner L, Schmutz C, Ashton B A. Leukocyte extravasation: chemokine transport and presentation by the endothelium.  Blood. 2002;  100 3853-3860
  • 84 Takasaki S, Hano H. Three-dimensional observations of the human hepatic artery (arterial system in the liver).  J Hepatol. 2001;  34 455-466
  • 85 Lalor P F, Lai W K, Curbishley S M, Shetty S, Adams D H. Human hepatic sinusoidal endothelial cells can be distinguished by expression of phenotypic markers related to their specialised functions in vivo.  World J Gastroenterol. 2006;  12 5429-5439
  • 86 Elvevold K H, Nedredal G I, Revhaug A, Smedsrod B. Scavenger properties of cultivated pig liver endothelial cells.  Comp Hepatol. 2004;  3 4
  • 87 Steinhoff G, Behrend M, Schrader B, Duijvestijn A M, Wonigeit K. Expression patterns of leukocyte adhesion ligand molecules on human liver endothelia: lack of ELAM-1 and CD62 inducibility on sinusoidal endothelia and distinct distribution of VCAM-1, ICAM-1, ICAM-2 and LFA-3.  Am J Pathol. 1993;  142 481-488
  • 88 Scoazec J Y, Feldmann G. In situ immunophenotyping study of endothelial cells of the human hepatic sinusoid: results and functional implications.  Hepatology. 1991;  14 789-797
  • 89 Wong J, Johnston B, Lee S S et al.. A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature.  J Clin Invest. 1997;  99 2782-2790
  • 90 Steinhoff G, Behrend M, Schrader B, Pichlmayr R. Intercellular immune adhesion molecules in human liver transplants: overview on expression patterns of leukocyte receptor and ligand molecules.  Hepatology. 1993;  18 440-453
  • 91 Adams D H, Hubscher S G, Fisher N C, Williams A, Robinson M. Expression of E-selectin and E-selectin ligands in human liver inflammation.  Hepatology. 1996;  24 533-538
  • 92 Jalkanen S, Salmi M. Cell surface monoamine oxidases: enzymes in search of a function.  EMBO J. 2001;  20 3893-3901
  • 93 McNab G, Reeves J L, Salmi M, Hubscher S, Jalkanen S, Adams D H. Vascular adhesion protein 1 mediates binding of T cells to human hepatic endothelium.  Gastroenterology. 1996;  110 522-528
  • 94 Yoong K F, McNab G, Hubscher S G, Adams D H. Vascular adhesion protein-1 and ICAM-1 support the adhesion of tumor-infiltrating lymphocytes to tumor endothelium in human hepatocellular carcinoma.  J Immunol. 1998;  160 3978-3988
  • 95 Lalor P F, Edwards S, McNab G, Salmi M, Jalkanen S, Adams D H. Vascular adhesion protein-1 mediates adhesion and transmigration of lymphocytes on human hepatic endothelial cells.  J Immunol. 2002;  169 983-992
  • 96 Ostermann G, Weber K S, Zernecke A, Schroder A, Weber C. JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes.  Nat Immunol. 2002;  3 151-158
  • 97 Chosay J G, Essani N A, Dunn C J, Jaeschke H. Neutrophil margination and extravasation in sinusoids and venules of liver during endotoxin-induced injury.  Am J Physiol. 1997;  272 G1195-G1200
  • 98 Smith D J, Salmi M, Bono P, Hellman J, Leu T, Jalkanen S. Cloning of vascular adhesion protein 1 reveals a novel multifunctional adhesion molecule.  J Exp Med. 1998;  188 17-27
  • 99 Salmi M, Yegutkin G G, Lehvonen R, Koskinen K, Salminen T, Jalkanen S. A cell surface amine oxidase directly controls lymphocyte migration.  Immunity. 2001;  14 265-276
  • 100 Lalor P F, Sun P J, Weston C J, Martin-Santos A, Wakelam M J, Adams D H. Activation of vascular adhesion protein-1 on liver endothelium results in an NF-kappaB-dependent increase in lymphocyte adhesion.  Hepatology. 2007;  45 465-474
  • 101 Kurkijarvi R, Yegutkin G G, Gunson B K, Jalkanen S, Salmi M, Adams D H. Circulating soluble vascular adhesion protein 1 accounts for the increased serum monoamine oxidase activity in chronic liver disease.  Gastroenterology. 2000;  119 1096-1103
  • 102 O'Sullivan J, Unzeta M, Healy J, O'Sullivan M I, Davey G, Tipton K F. Semicarbazide-sensitive amine oxidases: enzymes with quite a lot to do.  Neurotoxicology. 2004;  25 303-315
  • 103 Yu P H, Lu L X, Fan H et al.. Involvement of semicarbazide-sensitive amine oxidase-mediated deamination in lipopolysaccharide-induced pulmonary inflammation.  Am J Pathol. 2006;  168 718-726
  • 104 Enrique-Tarancon G, Castan I, Morin N et al.. Substrates of semicarbazide-sensitive amine oxidase co-operate with vanadate to stimulate tyrosine phosphorylation of insulin-receptor-substrate proteins, phosphoinositide 3-kinase activity and GLUT4 translocation in adipose cells.  Biochem J. 2000;  350 171-180
  • 105 Stolen C M, Madanat R, Marti L et al.. Semicarbazide sensitive amine oxidase overexpression has dual consequences: insulin mimicry and diabetes-like complications.  FASEB J. 2004;  18 702-704
  • 106 Adams D H, Burra P, Hubscher S G, Elias E, Newman W. Endothelial activation and circulating vascular adhesion molecules in alcoholic liver disease.  Hepatology. 1994;  19 588-594
  • 107 Jaeschke H. Chemokines, neutrophils, and inflammatory liver injury.  Shock. 1996;  6 403-404
  • 108 Kurkijarvi R, Adams D H, Leino R, Mottonen T, Jalkanen S, Salmi M. Circulating form of human vascular adhesion protein-1 (VAP-1): increased serum levels in inflammatory liver diseases.  J Immunol. 1998;  161 1549-1557
  • 109 Bonacchi A, Petrai I, Defranco R M et al.. The chemokine CCL21 modulates lymphocyte recruitment and fibrosis in chronic hepatitis C.  Gastroenterology. 2003;  125 1060-1076
  • 110 Efsen E, Bonacchi A, Pastacaldi S et al.. Agonist-specific regulation of monocyte chemoattractant protein-1 expression by cyclooxygenase metabolites in hepatic stellate cells.  Hepatology. 2001;  33 713-721
  • 111 Marra F, DeFranco R, Grappone C et al.. Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration.  Am J Pathol. 1998;  152 423-430
  • 112 Morland C M, Fear J, McNab G, Joplin R, Adams D H. Promotion of leukocyte transendothelial cell migration by chemokines derived from human biliary epithelial cells in vitro.  Proc Assoc Am Physicians. 1997;  109 372-382
  • 113 Maher J J. Rat hepatocytes and Kupffer cells interact to produce interleukin-8 (cinc) in the setting of ethanol.  Am J Physiol. 1995;  269 G518-G523
  • 114 Shields P L, Morland C M, Salmon M, Qin S, Hubscher S G, Adams D H. Chemokine and chemokine receptor interactions provide a mechanism for selective T cell recruitment to specific liver compartments within hepatitis C-infected liver.  J Immunol. 1999;  163 6236-6243
  • 115 Narumi S, Tominaga Y, Tamaru M et al.. Expression of IFN-inducible protein-10 in chronic hepatitis.  J Immunol. 1997;  158 5536-5544
  • 116 Afford S C, Fisher N C, Neil D A et al.. Distinct patterns of chemokine expression are associated with leukocyte recruitment in alcoholic hepatitis and alcoholic cirrhosis.  J Pathol. 1998;  186 82-89
  • 117 Kugelmas M, Hill D B, Vivian B, Marsano L, McClain C J. Cytokines and NASH: a pilot study of the effects of lifestyle modification and vitamin E.  Hepatology. 2003;  38 413-419
  • 118 Abiru S, Migita K, Maeda Y et al.. Serum cytokine and soluble cytokine receptor levels in patients with non-alcoholic steatohepatitis.  Liver Int. 2006;  26 39-45
  • 119 Haukeland J W, Damas J K, Konopski Z et al.. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2.  J Hepatol. 2006;  44 1167-1174
  • 120 Heydtmann M, Hardie D, Shields P L et al.. Detailed analysis of intrahepatic CD8 T cells in the normal and hepatitis C-infected liver reveals differences in specific populations of memory cells with distinct homing phenotypes.  J Immunol. 2006;  177 729-738
  • 121 Debes G F, Arnold C N, Young A J et al.. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues.  Nat Immunol. 2005;  6 889-894
  • 122 Fisher N C, Neil D A, Williams A, Adams D H. Serum concentrations and peripheral secretion of the beta chemokines monocyte chemoattractant protein 1 and macrophage inflammatory protein 1alpha in alcoholic liver disease.  Gut. 1999;  45 416-420
  • 123 Aleffi S, Petrai I, Bertolani C et al.. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells.  Hepatology. 2005;  42 1339-1348
  • 124 Zamara E, Galastri S, Aleffi S et al.. Prevention of severe toxic liver injury and oxidative stress in MCP-1-deficient mice.  J Hepatol. 2007;  46 230-238
  • 125 Bertolani C, Sancho-Bru P, Failli P et al.. Resistin as an intrahepatic cytokine: overexpression during chronic injury and induction of proinflammatory actions in hepatic stellate cells.  Am J Pathol. 2006;  169 2042-2053
  • 126 Kanda H, Tateya S, Tamori Y et al.. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity.  J Clin Invest. 2006;  116 1494-1505
  • 127 Boisvert J, Kunkel E J, Campbell J J, Keeffe E B, Butcher E C, Greenberg H B. Liver-infiltrating lymphocytes in end-stage hepatitis C virus: subsets, activation status, and chemokine receptor phenotypes.  J Hepatol. 2003;  38 67-75
  • 128 Coulomb-L'Hermin A, Amara A, Schiff C et al.. Stromal cell-derived factor 1 (SDF-1) and antenatal human B cell lymphopoiesis: expression of SDF-1 by mesothelial cells and biliary ductal plate epithelial cells.  Proc Natl Acad Sci USA. 1999;  96 8585-8590
  • 129 Heydtmann M, Lalor P F, Eksteen J A, Hubscher S G, Briskin M, Adams D H. CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver.  J Immunol. 2005;  174 1055-1062
  • 130 Sato T, Thorlacius H, Johnston B et al.. Role for CXCR6 in recruitment of activated CD8 + lymphocytes to inflamed liver.  J Immunol. 2005;  174 277-283
  • 131 Goddard S, Williams A, Morland C et al.. Differential expression of chemokines and chemokine receptors shapes the inflammatory response in rejecting human liver transplants.  Transplantation. 2001;  72 1957-1967
  • 132 Isse K, Harada K, Zen Y et al.. Fractalkine and CX3CR1 are involved in the recruitment of intraepithelial lymphocytes of intrahepatic bile ducts.  Hepatology. 2005;  41 506-516
  • 133 Curbishley S M, Eksteen B, Gladue R P, Lalor P, Adams D H. CXCR3 activation promotes lymphocyte transendothelial migration across human hepatic endothelium under fluid flow.  Am J Pathol. 2005;  167 887-899
  • 134 Leroy V, Vigan I, Mosnier J F et al.. Phenotypic and functional characterization of intrahepatic T lymphocytes during chronic hepatitis C.  Hepatology. 2003;  38 829-841
  • 135 Bonacchi A, Romagnani P, Romanelli R G et al.. Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes.  J Biol Chem. 2001;  276 9945-9954
  • 136 Dela Pena A, Leclercq I, Field J, George J, Jones B, Farrell G. NF-kappaB activation, rather than TNF, mediates hepatic inflammation in a murine dietary model of steatohepatitis.  Gastroenterology. 2005;  129 1663-1674
  • 137 Boden G, She P, Mozzoli M et al.. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver.  Diabetes. 2005;  54 3458-3465
  • 138 Bird G LA, Sheron N, Goka A KJ, Alexander G JM, Williams R. Increased plasma tumour necrosis factor in severe alcoholic hepatitis.  Ann Intern Med. 1990;  112 917-920
  • 139 Khoruts A, Stahnke L, McClain C J, Logan G, Allen J I. Circulating tumor necrosis factor, interleukin-1 and interleukin-6 concentrations in chronic alcoholic patients.  Hepatology. 1991;  13 267-276
  • 140 Gebhard H H, Zysk S P, Schmitt-Sody M, Jansson V, Messmer K, Veihelmann A. The effects of Celecoxib on inflammation and synovial microcirculation in murine antigen-induced arthritis.  Clin Exp Rheumatol. 2005;  23 63-70
  • 141 Nanji A A, Miao L, Thomas P et al.. Enhanced cyclooxygenase-2 gene expression in alcoholic liver disease in the rat.  Gastroenterology. 1997;  112 943-951
  • 142 Yu J, Ip E, Dela P A et al.. COX-2 induction in mice with experimental nutritional steatohepatitis: role as pro-inflammatory mediator.  Hepatology. 2006;  43 826-836
  • 143 Tilg H, Diehl A M. Cytokines in alcoholic and nonalcoholic steatohepatitis.  N Engl J Med. 2000;  343 1467-1476
  • 144 Wigg A J, Roberts-Thomson I C, Dymock R B, McCarthy P J, Grose R H, Cummins A G. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis.  Gut. 2001;  48 206-211
  • 145 Crespo J, Cayon A, Fernandez-Gil P et al.. Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients.  Hepatology. 2001;  34 1158-1163
  • 146 Hui J M, Hodge A, Farrell G C, Kench J G, Kriketos A, George J. Beyond insulin resistance in NASH: TNF-alpha or adiponectin'.  Hepatology. 2004;  40 46-54
  • 147 Poniachik J, Csendes A, Diaz J C et al.. Increased production of IL-1alpha and TNF-alpha in lipopolysaccharide-stimulated blood from obese patients with non-alcoholic fatty liver disease.  Cytokine. 2006;  33 252-257
  • 148 Tomita K, Tamiya G, Ando S et al.. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice.  Gut. 2006;  55 415-424
  • 149 Koppe S W, Sahai A, Malladi P, Whitington P F, Green R M. Pentoxifylline attenuates steatohepatitis induced by the methionine choline deficient diet.  J Hepatol. 2004;  41 592-598
  • 150 Satapathy S K, Garg S, Chauhan R et al.. Beneficial effects of tumor necrosis factor-alpha inhibition by pentoxifylline on clinical, biochemical, and metabolic parameters of patients with nonalcoholic steatohepatitis.  Am J Gastroenterol. 2004;  99 1946-1952
  • 151 Adams L A, Zein C O, Angulo P, Lindor K D. A pilot trial of pentoxifylline in nonalcoholic steatohepatitis.  Am J Gastroenterol. 2004;  99 2365-2368
  • 152 Anty R, Bekri S, Luciani N et al.. The inflammatory C-reactive protein is increased in both liver and adipose tissue in severely obese patients independently from metabolic syndrome, type 2 diabetes, and NASH.  Am J Gastroenterol. 2006;  101 1824-1833
  • 153 Fox-Robichaud A, Kubes P. Molecular mechanisms of tumor necrosis factor alpha-stimulated leukocyte recruitment into the murine hepatic circulation.  Hepatology. 2000;  31 1123-1127
  • 154 La Cava A, Matarese G. The weight of leptin in immunity.  Nat Rev Immunol. 2004;  4 371-379
  • 155 Verma S, Li S H, Wang C H et al.. Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction.  Circulation. 2003;  108 736-740
  • 156 Parish C R. The role of heparan sulphate in inflammation.  Nat Rev Immunol. 2006;  6 633-643
  • 157 Shiratori Y, Takada H, Hikiba Y et al.. Production of chemotactic factor, interleukin-8, from hepatocytes exposed to ethanol.  Hepatology. 1993;  18 1477-1482
  • 158 Armendariz-Borunda J, Seyer J M, Postlethwaite A E, Kang A H. Kupffer cells from carbon tetrachloride-injured rat liver produce chemotactic factors for fibroblasts and monocytes: the role of tumour necrosis factor-alpha.  Hepatology. 1991;  14 895-900
  • 159 Edwards S, Lalor P F, Nash G B, Rainger G E, Adams D H. Lymphocyte traffic through sinusoidal endothelial cells is regulated by hepatocytes.  Hepatology. 2005;  41 451-459
  • 160 Lieber C S. Alcohol and the liver: metabolism of alcohol and its role in hepatic and extrahepatic diseases.  Mt Sinai J Med. 2000;  67 84-94
  • 161 Lauterburg B H, Davies S, Mitchell J R. Ethanol suppresses hepatic glutathione synthesis in rats in vivo.  J Pharmacol Exp Ther. 1984;  230 7-11
  • 162 Lieber C S. Role of oxidative stress and antioxidant therapy in alcoholic and nonalcoholic liver diseases.  Adv Pharmacol. 1997;  38 601-628
  • 163 Lieber C S. Biochemical factors in alcoholic liver disease.  Semin Liver Dis. 1993;  13 136-153
  • 164 Kessova I, Cederbaum A I. CYP2E1: biochemistry, toxicology, regulation and function in ethanol-induced liver injury.  Curr Mol Med. 2003;  3 509-518
  • 165 Nanji A A. Role of Kupffer cells in alcoholic hepatitis.  Alcohol. 2002;  27 13-15
  • 166 Purohit V, Brenner D A. Mechanisms of alcohol-induced hepatic fibrosis: a summary of the Ron Thurman Symposium.  Hepatology. 2006;  43 872-878
  • 167 Yokoyama H, Fukuda M, Okamura Y et al.. Superoxide anion release into the hepatic sinusoid after an acute ethanol challenge and its attenuation by Kupffer cell depletion.  Alcohol Clin Exp Res. 1999;  23 71S-75S
  • 168 Deaciuc I V, D'Souza N B, Spitzer J J. Tumor necrosis factor-alpha cell-surface receptors of liver parenchymal and nonparenchymal cells during acute and chronic alcohol administration to rats.  Alcohol Clin Exp Res. 1995;  19 332-338
  • 169 Saeed R W, Varma S, Peng T, Tracey K J, Sherry B, Metz C N. Ethanol blocks leukocyte recruitment and endothelial cell activation in vivo and in vitro.  J Immunol. 2004;  173 6376-6383
  • 170 Yamaguchi T, Dayton C, Shigematsu T et al.. Preconditioning with ethanol prevents postischemic leukocyte-endothelial cell adhesive interactions.  Am J Physiol Heart Circ Physiol. 2002;  283 H1019-H1030
  • 171 Bautista A P. Chronic alcohol intoxication induces hepatic injury through enhanced macrophage inflammatory protein-2 production and intercellular adhesion molecule-1 expression in the liver.  Hepatology. 1997;  25 335-342
  • 172 Ohki E, Kato S, Ohgo H et al.. Effect of chronic ethanol feeding on endotoxin-induced hepatic injury: role of adhesion molecules on leukocytes and hepatic sinusoid.  Alcohol Clin Exp Res. 1998;  22 129S-132S
  • 173 Thurman R G, Bradford B U, Iimuro Y et al.. The role of gut-derived bacterial toxins and free radicals in alcohol-induced liver injury.  J Gastroenterol Hepatol. 1998;  13(suppl) S39-S50
  • 174 Thurman II R G. Alcoholic liver injury involves activation of Kupffer cells by endotoxin.  Am J Physiol. 1998;  275 G605-G611
  • 175 John B, Klein I, Crispe I N. Immune role of hepatic TLR-4 revealed by orthotopic mouse liver transplantation.  Hepatology. 2007;  45 178-186
  • 176 Tuma D J, Thiele G M, Xu D, Klassen L W, Sorrell M F. Acetaldehyde and malondialdehyde react together to generate distinct protein adducts in the liver during long-term ethanol administration.  Hepatology. 1996;  23 872-880
  • 177 Rolla R, Vay D, Mottaran E et al.. Detection of circulating antibodies against malondialdehyde-acetaldehyde adducts in patients with alcohol-induced liver disease.  Hepatology. 2000;  31 878-884
  • 178 Duryee M J, Klassen L W, Freeman T L, Willis M S, Tuma D J, Thiele G M. Lipopolysaccharide is a cofactor for malondialdehyde-acetaldehyde adduct-mediated cytokine/chemokine release by rat sinusoidal liver endothelial and Kupffer cells.  Alcohol Clin Exp Res. 2004;  28 1931-1938
  • 179 Nelson S, Bagby G, Bainton B G, Summer W R. The effects of acute and chronic alcoholism on tumor necrosis factor and the inflammatory response.  J Infect Dis. 1989;  160 422-429
  • 180 Maher J J. Rat hepatocytes and Kupffer cells interact to produce interleukin-8 (CINC) in the setting of ethanol.  Am J Physiol. 1995;  269 G518-G523
  • 181 Spitzer J A, Zheng M, Kolls J K, Vande S C, Spitzer J J. Ethanol and LPS modulate NF-kappaB activation, inducible NO synthase and COX-2 gene expression in rat liver cells in vivo.  Front Biosci. 2002;  7 a99-a108
  • 182 Bautista A P. Chronic alcohol intoxication primes Kupffer cells and endothelial cells for enhanced CC-chemokine production and concomitantly suppresses phagocytosis and chemotaxis.  Front Biosci. 2002;  7 a117-a125
  • 183 Paik Y H, Schwabe R F, Bataller R, Russo M P, Jobin C, Brenner D A. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells.  Hepatology. 2003;  37 1043-1055
  • 184 Roman J, Colell A, Blasco C et al.. Differential role of ethanol and acetaldehyde in the induction of oxidative stress in HEP G2 cells: effect on transcription factors AP-1 and NF-kappaB.  Hepatology. 1999;  30 1473-1480
  • 185 Aroor A R, Shukla S D. MAP kinase signaling in diverse effects of ethanol.  Life Sci. 2004;  74 2339-2364
  • 186 Cao Q, Mak K M, Lieber C S. Cytochrome P4502E1 primes macrophages to increase TNF-alpha production in response to lipopolysaccharide.  Am J Physiol Gastrointest Liver Physiol. 2005;  289 G95-G107
  • 187 Wheeler M D. Endotoxin and Kupffer cell activation in alcoholic liver disease.  Alcohol Res Health. 2003;  27 300-306
  • 188 Yamashina S, Takei Y, Ikejima K, Enomoto N, Kitamura T, Sato N. Ethanol-induced sensitization to endotoxin in Kupffer cells is dependent upon oxidative stress.  Alcohol Clin Exp Res. 2005;  29 246S-250S
  • 189 Jokelainen K, Thomas P, Lindros K, Nanji A A. Acetaldehyde inhibits NF-kappaB activation through IkappaBalpha preservation in rat Kupffer cells.  Biochem Biophys Res Commun. 1998;  253 834-836
  • 190 Roman J, Colell A, Blasco C et al.. Differential role of ethanol and acetaldehyde in the induction of oxidative stress in HEP G2 cells: effect on transcription factors AP-1 and NF-kappaB.  Hepatology. 1999;  30 1473-1480
  • 191 Koteish A, Yang S, Lin H, Huang X, Diehl A M. Chronic ethanol exposure potentiates lipopolysaccharide liver injury despite inhibiting Jun N-terminal kinase and caspase 3 activation.  J Biol Chem. 2002;  277 13037-13044
  • 192 Altura B M, Gebrewold A. Pyrrolidine dithiocarbamate attenuates alcohol-induced leukocyte-endothelial cell interaction and cerebral vascular damage in rats: possible role of activation of transcription factor NF-kappaB in alcohol brain pathology.  Alcohol. 1998;  16 25-28
  • 193 Nanji A A, Jokelainen K, Fotouhinia M et al.. Increased severity of alcoholic liver injury in female rats: role of oxidative stress, endotoxin, and chemokines.  Am J Physiol Gastrointest Liver Physiol. 2001;  281 G1348-G1356
  • 194 Rot A, von Andrian U. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells.  Annu Rev Immunol. 2004;  22 891-928

David H AdamsM.D. 

The Liver Research Group, Institute for Biomedical Science, The University of Birmingham Medical School

Edgbaston, Birmingham B15 2TT, United Kingdom

    >