Synlett 2007(6): 0929-0933  
DOI: 10.1055/s-2007-973858
LETTER
© Georg Thieme Verlag Stuttgart · New York

Intermolecular Addition Reaction to Alkenes of Acylmolybdenum Complexes Generated by Oxidative Addition of Aryl or Alkenyl Halides with Molybdenum(0) Carbonyl Complexes

Kenichiro Sangu, Toru Watanabe, Jun Takaya, Nobuharu Iwasawa*
Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
Fax: +81(3)57342931; e-Mail: niwasawa@chem.titech.ac.jp;
Further Information

Publication History

Received 18 January 2007
Publication Date:
26 March 2007 (online)

Abstract

Acylmolybdenum species, generated by oxidative addition of aryl or alkenyl halides with molybdenum(0) carbonyl complex followed by carbon monoxide insertion, added to various kinds of alkenes intermolecularly to give simple addition products in good yields without formation of carbonylative Heck-type products.

    References and Notes

  • 1a Wittig G. Davis P. Koenig G. Chem. Ber.  1951,  84:  627 
  • 1b Seebach D. Angew. Chem., Int. Ed. Engl.  1979,  18:  239 
  • 2a Corey EJ. Hegedus LS. J. Am. Chem. Soc.  1969,  91:  4926 
  • 2b Hegedus LS. Perry RJ. J. Org. Chem.  1985,  50:  4955 
  • 2c Seyferth D. Weinstein RM. Wang W.-L. J. Org. Chem.  1983,  48:  1144 
  • 2d Seyferth D. Hui RC. J. Am. Chem. Soc.  1985,  107:  4551 
  • 2e Söderberg BC. York DC. Harriston EA. Caprara HJ. Flurry AH. Organometallics  1994,  13:  4501 
  • 2f Söderberg BC. York DC. Organometallics  1994,  13:  4501 
  • 3a Cooke MP. Parlman RM. J. Am. Chem. Soc.  1975,  97:  6863 
  • 3b Cooke MP. Parlman EA. J. Am. Chem. Soc.  1977,  99:  5222 
  • 3c DeShong P. Silder DR. Rybczynski PJ. Slough GA. Rheingold AL. J. Am. Chem. Soc.  1988,  110:  2575 
  • For the activation of acid chlorides, see:
  • 4a Hori K. Ando M. Takaishi N. Inamoto Y. Tetrahedron Lett.  1987,  28:  5883 
  • 4b Andersson C.-M. Hallberg A. J. Org. Chem.  1988,  53:  4257 
  • For the activation of acid anhydrides, see:
  • 5a Oguma K. Miura M. Satoh T. Nomura M. J. Organomet. Chem.  2002,  648:  297 
  • 5b Hong Y.-T. Barchuk A. Krische MJ. Angew. Chem. Int. Ed.  2006,  45:  6885 
  • For the activation of aldehydes, see:
  • 6a Schwartz J. Cannon JB. J. Am. Chem. Soc.  1974,  96:  4721 
  • 6b Marder TB. Roe DC. Millstein D. Organometallics  1988,  7:  1451 
  • 6c Willis MC. McNally SJ. Beswick PJ. Angew. Chem. Int. Ed.  2004,  43:  340 
  • 6d Willis MC. Randell-Sly HE. Woodward RL. Currie GS. Org. Lett.  2005,  7:  2249 
  • 6e Jo E.-A. Jun C.-H. Eur. J. Org. Chem.  2006,  2504 
  • 6f Beller M. Seayad J. Tillack A. Jiao H. Angew. Chem. Int. Ed.  2004,  43:  3368 ; and references cited therein
  • 7a Yamane M. Kubota Y. Narasaka K. Bull. Chem. Soc. Jpn.  2005,  78:  331 
  • 7b Hanzawa Y. Tabuchi N. Saito K. Noguchi S. Taguchi T. Angew. Chem. Int. Ed.  1999,  38:  2395 ; and references cited therein
  • 8 Tsuji J. Palladium Reagents and Catalysts   Chap. 3.5:  John Wiley; Chester: 2004.  p.265 ; and references cited therein
  • 9 For the palladium-catalyzed intermolecular carbonylative Heck reaction, see: Satoh T. Itaya T. Okuro K. Miura M. Nomura M. J. Org. Chem.  1995,  60:  7267 ; see also, ref 4
  • For the palladium-catalyzed intramolecular carbonylative Heck reaction, see:
  • 10a Hayashi T. Tang J. Kato K. Org. Lett.  1999,  1:  1487 
  • 10b Negishi E. Ma S. Amanfu J. Copéret C. Miller JA. Tour JM. J. Am. Chem. Soc.  1996,  118:  5919 
  • There are few examples of intermolecular nucleophlic addition reactions of acyl late-transition-metal intermediates to olefins to give addition products, for reference, see:
  • 11a Sauthier M. Castanet Y. Mortreux A. Chem. Commun.  2004,  1520 
  • 11b Shirakawa E. Yamamoto Y. Nakao Y. Tsuchimoto T. Hiyama T. Chem. Commun.  2001,  1926 
  • 11c Biavati A. Chiusoli GP. Costa M. Terenghi G. Transition Met. Chem.  1979,  4:  398 ; see also ref. 7b
  • Recently, Larock et al. reported a palladium-catalyzed intramolecular carbonylation of o-iodostyrene derivatives, see:
  • 12a Gagnier SV. Larock RC. J. Am. Chem. Soc.  2003,  125:  4804 
  • See also:
  • 12b Wu X. Nilsson P. Larhed M. J. Org. Chem.  2005,  70:  346 
  • For molybdenum(0)-catalyzed allylic substitution reactions via oxidative addition of allylic halide equivalents, see:
  • 13a Trost BM. Lautens M. J. Am. Chem. Soc.  1982,  104:  5543 
  • 13b Trost BM. Hachiya I. J. Am. Chem. Soc.  1998,  120:  1104 
  • 13c Belda O. Moberg C. Acc. Chem. Res.  2004,  37:  159 
  • 13d Malkov AV. Gouriou L. Lloyd-Jones GC. Stary I. Langer V. Spoor P. Vinader V. Kocovsky P. Chem. Eur. J.  2006,  12:  6910 ; and references cited therein
  • Richmond et al. reported that the chelation-assisted oxidative addition of Ar-X to W(CO)3(EtCN)3 proceeded smoothly to give air-stable, seven-coordinate tungsten(II) complexes. However, this reaction was limited to specific aryl halides bearing a bidentate or tridentate chelating group and was not applied to synthetic reactions, see:
  • 14a Richmond TG. King MA. Keison EP. Arif MA. Organometallics  1987,  6:  1995 
  • 14b Buffin BP. Arif AM. Richmond TG. J. Chem. Soc., Chem. Commun.  1993,  1432 
  • 15 Larhed et al. reported the palladium-catalyzed carbonylation of aryl halides using Mo(CO)6 as a carbonyl source, see: Wu X. Ekegren JK. Larhed M. Organometallics  2006,  25:  1434 ; and references cited therein, see also ref 12b
  • 19 For an example of a related mechanism, see: Qian H. Pei T. Widenhoefer RA. Organometallics  2005,  24:  287 ; see also ref 12a
16

The use of other solvents such as THF, 1,4-dioxane, toluene and dibutyl ether at reflux temperature resulted in low conversion.

17

Typical Procedure: A mixture of aryl iodide 1m (51 mg, 0.20 mmol), Mo(CO)6 (53 mg, 0.20 mmol) and ethyl acrylate (2a, 0.22 mL, 2.0 mmol) was heated in DMF at 160 °C for 1 h under an Ar atmosphere. After complete consumption of the aryl iodide 1m was confirmed by TLC, the reaction was quenched at r.t. with phosphate buffer (pH 7). The product was extracted with Et2O (4 ×) and the combined organic extracts were washed with brine and dried over MgSO4. The solvent was removed under reduced pressure and the residue was purified by preparative TLC (silica gel, hexane-EtOAc, 5:1) to afford product 3m (40 mg, 78%).
Spectral Data for Selected Compounds
Ethyl 4-(naphthalen-1-yl)-4-oxobutanoate (3m)
1H NMR (300 MHz, CDCl3): δ = 1.28 (t, J = 7.1 Hz, 3 H), 2.83 (t, J = 6.6 Hz, 2 H), 3.37 (t, J = 6.6 Hz, 2 H), 4.19 (q, J = 7.1 Hz, 2 H), 7.45-7.65 (m, 3 H), 7.87 (d, J = 7.7 Hz, 1 H), 7.94 (d, J = 7.3 Hz, 1 H), 7.99 (d, J = 8.4 Hz, 1 H), 8.60 (d, J = 8.6 Hz, 1 H); 13C NMR (75 MHz, CDCl3): δ = 14.15, 28.65, 36.64, 60.65, 124.31, 125.73, 126.39, 127.48, 127.85, 128.31, 130.03, 132.61, 133.87, 135.61, 172.80, 202.25; IR (KBr): 2981, 1732, 1684 cm-1; Anal Calcd for C16H16O3: C, 74.98; H, 6.29. Found: C, 74.69; H, 6.39.
1-(Naphthalen-1-yl)-3-(4-methoxyphenyl)propan-1-one (5h) 1H NMR (300 MHz, CDCl3): δ = 3.09 (t, J = 7.7 Hz, 2 H), 3.36 (t, J = 7.7 Hz, 2 H), 3.79 (s, 3 H), 6.84 (d, J = 8.7 Hz, 2 H), 7.18 (d, J = 8.7 Hz, 2 H), 7.43-7.66 (m, 3 H), 7.81 (d, J = 7.3 Hz, 1 H), 7.87 (d, J = 7.8 Hz, 1 H), 7.98 (d, J = 8.3 Hz, 1 H), 8.54 (d, J = 8.5 Hz, 1 H); 13C NMR (75 MHz, CDCl3): δ = 29.74, 44.10, 55.25, 113.93, 124.33, 125.76, 126.41, 127.31, 127.82, 128.36, 129.36, 130.10, 132.48, 133.11, 133.93, 136.08, 158.00, 203.72; ΙR (KBr): 3048, 1681, 1247 cm-1; Anal Calcd for C20H18O2: C, 82.73; H, 6.25. Found: C, 82.49; H, 6.42.
2-Ethyl-1-indanone (11b) 1H NMR (300 MHz, CDCl3): δ = 1.01 (t, J = 7.5 Hz, 3 H), 1.49-1.60 (m, 1 H), 1.90-2.05 (m, 1 H), 2.55-2.66 (m, 1 H), 2.82 (dd, J = 3.8, 17.4 Hz, 1 H), 3.32 (dd, J = 7.9, 17.4 Hz, 1 H), 7.36 (t, J = 7.6 Hz, 1 H), 7.46 (d, J = 7.6 Hz, 1 H), 7.58 (t, J = 7.6 Hz, 1 H), 7.75 (d, J = 7.6 Hz, 1 H); 13C NMR (75 MHz, CDCl3): δ = 11.60, 24.46, 32.32, 48.75, 123.83, 126.53, 127.28, 134.60, 136.96, 153.82, 208.97; IR (KBr): 2961, 1709 cm-1; Anal Calcd for C11H12O: C, 82.46; H, 7.55. Found: C, 82.70; H, 7.54.

18

3m and 5g were obtained in lower yield in the absence of CO.

20

No H-D exchange was observed when partially deuterated ketone 5g was heated in DMF at 160 °C.

21

We tried the reaction using D2O for the quenching but no deuterium incorporation in the product was observed. Thus, at present, we believe that the molybdenum enolate intermediate is protonated during the reaction by the small amount of water present in DMF.

22

Palladium-catalyzed intramolecular carbonylative cyclization was limited to terminal olefins in the case of indanone synthesis, see ref 12.