Studies on the Constituents of Artemisia annua
Part II

Tu You-you, Ni Mu-yun, Zhong Yu-rong, Li Lan-na, Cui Shu-lian, Zhang Mu-qun, Wang Xiu-zhen, Ji Zheng**
and Liang Xiaotian**

* Institute of Chinese Materia Medica, Academy of Traditional Chinese Medicine, Beijing, China

Key Word Index:
Artemisia annua L.; Compositae; Qinghaosu; Qinghaosu I—V; Qinghao acid; Flavones; Alkanol; Scopoletin; Essential oil.

Abstract
The present paper is a continuation of our study on the Chinese traditional herb Artemisia annua L. [1—5], describing several additional constituents: quinghaosu IV and V (V, VII), quinghao acid (VIII) [6], chrysosplenol (VIa) [7] and a paraffinic alcohol. V, VII and VIII are compounds with unreported structures.

Introduction
A number of our earlier papers have been devoted to studies of chemical constituents isolated from Artemisia annua L. (Compositae), the most notable constituent being the antimalerial quinghaosu (I) [1—4], a peroxidic lactone with unique structure. Other constituents include quinghaosu-I—III (II—IV), a flavonol (VI), scopoletin and a few terpenes from the essential oil [5].

This paper deals with the isolation and characterization of V, VIa, VII, VIII and a paraffinic alcohol.

It is pertinent here to point out the close stereochemical kinship among the previously established structures I—IV. They all belong to the amorphane series (IX) [9], which has a cis decalin skeleton with the isopropyl group trans to the hydrogen on the ring juncture. Compounds I and IV are further distinguished by the presence of a modified seven-membered A-ring as the result of insertion of an extra ether oxygen.

1 For Part I, see ref. 5.
Results and Discussion

Qinghaosu-IV (V) is a colourless crystalline compound with m.p. 172–173°. MS molecular weight 282 \(\left(M^+ \right) \) agreed with \(C_{15}H_{22}O_3 \). Hydroxy and lactonic carbonyl groups can be inferred from its IR spectrum (3450, 1728 cm\(^{-1} \)). The \(^1\)HNMR spectrum displayed the following features: \(\delta \) 0.95 (d, \(J = 6 \) Hz, 10-CH\(_3\)), 1.20 (d, \(J = 6, 11\)-CH\(_3\)), 1.65 (s, 4-CH\(_3\)), 3.20 (m, H-C-11), 3.60 (br, H-C-3), 5.60 (s, H-C-5) and an exchangeable OH group at 1.88. Except for the two signals at \(\delta \) 1.88 and 3.60, the NMR spectra of IV and V are almost superposable, thus leading to the conclusion that the extra oxygen of V is in the form of a hydroxy group with only four possible places (C-2, 3, 8 and 9) for its accommodation. Eu(fod)\(_3\) was used for its allocation. Addition of successive aliquots of the shift reagent gave rise to linear changes of chemical shifts. In the case of qinghaosu III (IV), we have for 10-CH\(_3\), \(\delta \) 0.95 \(\rightarrow \) 0.96 \(\rightarrow \) 1.16 \(\rightarrow \) 1.16; for 11-CH\(_3\), 1.20 \(\rightarrow \) 1.42 \(\rightarrow \) 2.20 \(\rightarrow \) 2.40; for 4-CH\(_3\), 1.54 \(\rightarrow \) 1.55 \(\rightarrow \) 1.74 \(\rightarrow \) 1.75; and for H-C-5, 5.55 \(\rightarrow \) 5.75 \(\rightarrow \) 6.20 \(\rightarrow \) 6.40. Qinghaosu IV (V) gave the corresponding shifts: 10-CH\(_3\), \(\delta \) 1.04 \(\rightarrow \) 1.46 \(\rightarrow \) 1.77 \(\rightarrow \) 2.15; 11-CH\(_3\), 1.27 \(\rightarrow \) 1.99 \(\rightarrow \) 2.60 \(\rightarrow \) 3.42; 4-CH\(_3\), 1.65 \(\rightarrow \) 3.93 \(\rightarrow \) 5.74 \(\rightarrow \) 7.25; H-C-5, 5.70 \(\rightarrow \) 6.91 \(\rightarrow \) 8.06 \(\rightarrow \) 9.18. The marked shifts for 4-CH\(_3\) and H-C-5 in compound V is compatible only with an OH group at position-3, and the W\(1/2\) 6 Hz) of the H-C-3 multiplet (hence equatorial) indicates an \(\alpha \)-orientation for the OH group (axial). The structure of IV has been firmly established by its preparation from qinghaosu (I) by catalytic hydrogenation [5].

Chrysosplenol (6a) has very similar UV and \(^1\)HNMR spectra to eupatin (3, 5, 3'-triOH, 6, 7, 4'-triOMe) [7]. However, large discrepancies in m.p. of the acetates (155–157°; 219–221° for eupatin acetate) indicated some contamination by a C26 alcohol (ca. 9%). In the case of qinghao acid, which also displayed conspicuous differences. The structure of chrysosplenol (VIa) was confirmed by its preparation from qinghaosu (I) by catalytic hydrogenation [5].

Qinghaosu V (VII) has m.p. 125–126°, and a formula of \(C_{15}H_{22}O_5 \) from MS data. IR data (3420, 1700, 1630 cm\(^{-1} \)) showed the presence of OH and \(\alpha, \beta \)-unsaturated lactone functionalities. The \(^1\)HNMR spectrum showed two methyl groups at \(\delta \) 0.85 (d) and 1.36 (s), and terminal methylene protons at 5.56 (s) and 16.16 (s). The carbonyl hydrogen at C-5 (\(\delta \) 3.82) is a doublet eith \(J = 3 \), hence should be in \(cis \) relationship with the hydrogen on the ring junction (C-6). Further studies have been thwarted by scanty supply of material, and the structure as shown by VII is thus tentatively proposed, leaning heavily on biogenetic considerations.

We also isolated a straight chain fatty alcohol, m.p. 74–76°, characterized by its IR and \(^1\)HNMR spectra. The MS peak at m/e 392 (M-18) [11] showed it to be octacosanol (\(C_{28}H_{57}O_2 \)), probably contaminated by some C30 alcohol (ca. 5%) as evidenced by a tiny peak at m/e 420. Further fragmentations of interest involved successive losses of 28 units from m/e 392, giving peaks at m/e 364 and 336. The last mentioned peak however was stronger than usual [11], indicating the possible contamination by a C26 alcohol. ULBEL [12] reported the isolation of a C26 alcohol from the same species, using elemental analysis as the main evidence. Since C26 and C25 alcohols cannot be adequately differentiated by elemental analysis, there is room for the possibility of their sample being also octacosanol.

Experimental

Melting points were not corrected. IR spectra were taken with KBr discs on an IR-S spectrometer. \(^1\)HNMR spectra were taken with CDC\(_3\) solutions on WH-90, with TMS as the internal standard. MS were recorded with MM70–70H spectrometer.

Plant Material

Artemisia annua L. is a regular commodity, available in practically all warehouses for Chinese herbs. However, there might well be variations in chemical constituents with different localities, which were therefore specified below.

Silica gel columns and plates were used and eluted with the mixed solvent of petroleum ether and ethyl acetate in individually specified proportions.
Qinghaosu-IV

Plant material from Sichuan Province was extracted with petroleum ether and the solvent removed. The crude extract was chromatographed. Qinghaosu-IV displayed only a single spot on TLC (1:1 mixed solvent, 2 % phosphomolybdic acid spray). It was purified by recrystallization from ethanol. MS, m/e (%): 282 (M⁺, 5), 238 (1), 222 (75), 207 (3), 204 (11), 194 (9), 178 (14), 166 (18), 150 (23), 137 (14), 122 (5), 107 (11), 93 (11), 81 (9), 74 (4), 69 (7), 55 (15), 43 (10). IR (cm⁻¹): 3450 (s), 2950 (w), 1625 (m), 1445 (m), 1400 (w), 1380 (w), 1320 (w), 1274 (m), 1140 (m), 1080 (m), 1050 (m), 970 (m), 940 (w), 920 (m), 865 (91), 852 (14), 832 (37), 69 (75), 57 (39), 43 (75).

Compounds V, VIII and the fatty alcohol were isolated from the plant material of the Beijing area. The ethereal extracts were shaken with 2 % aqueous sodium hydroxide, which upon acidification gave the crude acid fraction. From the chromatographic fractions with 95:5, 85:15 and 65:35 solvent compositions, were obtained qinghao acid (VIII), a fatty alcohol and chrysosplenol (VIa) respectively.

The non-acidic fraction from ether as mentioned above was concentrated, mixed with polyamide powder and percolated with ethyl alcohol. After stripping of solvent, the residue was extracted again with ether and the crude extract was chromatographed on a column. Qinghaosu V came down from the 6:4 portion, showing one spot on TLC (1:1 mixed solvent, violet spot when sprayed with 2 % vanillin). The fatty acid was isolated by recrystallization from petroleum ether as transparent prisms, soluble in xylene and sparingly soluble in benzene. The residue was extracted again with ether and the crude extract was chromatographed on a column. Qinghaosu V came down from the 6:4 portion, showing one spot on TLC (1:1 mixed solvent, violet spot when sprayed with 2 % vanillin).

Qinghaosu acid

The crude acid displayed a single spot on TLC (9:1 mixed solvent, 2 % vanillin-H₂SO₄ spray). It was purified by recrystallization from petroleum ether as transparent prisms, soluble in xylene and sparingly soluble in benzene. The residue was extracted again with ether and the crude extract was chromatographed on a column. Qinghaosu V came down from the 6:4 portion, showing one spot on TLC (1:1 mixed solvent, violet spot when sprayed with 2 % vanillin).

The fatty alcohol Crude product as one spot on TLC (9:1 mixed solvent, 2 % vanillin-H₂SO₄ spray). It was purified by recrystallization from petroleum ether as transparent prisms, soluble in xylene and sparingly soluble in benzene. The residue was extracted again with ether and the crude extract was chromatographed on a column. Qinghaosu V came down from the 6:4 portion, showing one spot on TLC (1:1 mixed solvent, violet spot when sprayed with 2 % vanillin).

Acknowledgements

We thank Prof. T. J. MABRY of the University of Texas at Austin for a sample of eupatin. Liu Hongming of the Sichuan Institute of Chinese Materia Medica for the sample of 3,4-dihydroxybenzoic acid obtained on alkalai fusion of chrysosplenol (identical IR with our sample) and our analytical colleagues for the recorded spectra.

References

Address: Prof. Liang Xiaotian, Institute of Materia Medica, Nan-wei Road, Beijing 100050, China.