Synlett 2007(5): 0753-0756  
DOI: 10.1055/s-2007-970779
LETTER
© Georg Thieme Verlag Stuttgart · New York

Novel Ligand-Free, Cobalt-Catalyzed [2+2+2] Cycloadditions: Syntheses of 1,4-Disilatetralines and 1,3-Disilaindanes

Leszek Doszczak, Philipp Fey, Reinhold Tacke*
Universität Würzburg, Institut für Anorganische Chemie, Am Hubland, 97074 Würzburg, Germany
Fax: +49(931)8884609; e-Mail: r.tacke@mail.uni-wuerzburg.de;
Further Information

Publication History

Received 22 December 2006
Publication Date:
08 March 2007 (online)

Abstract

A new and simple catalytic system for efficient [2+2+2] alkyne cycloadditions was discovered. Cobalt(II) iodide in acetonitrile, in the presence of zinc powder, can catalyze arene synthesis at room temperature, and a 2.5% catalyst load gives almost complete consumption of the starting materials within ca. five minutes. Sterically hindered diynes can be efficiently coupled with terminal and internal monoynes. A large excess of monoyne is not required. Relatively small amounts of byproducts make the isolation of the target compound straightforward. This method allows efficient one-step syntheses of 1,4-disilatetralines and 1,3-disilaindanes, which are hardly available using other methods.

    References and Notes

  • For reviews, see:
  • 1a Vollhardt KPC. Angew. Chem., Int. Ed. Engl.  1984,  23:  539 ; Angew. Chem. 1984 , 96, 525
  • 1b Schore NE. Chem. Rev.  1988,  88:  1081 
  • 1c Schore NE. In Comprehensive Organic Synthesis   Vol. 5:  Trost BM. Fleming I. Paquette LA. Pergamon Press; Oxford: 1991.  p.1129 
  • 1d Grotjahn DB. In Comprehensive Organometallic Chemistry II   Vol. 12:  Abel EW. Stone FGA. Wilkinson G. Hegedus LS. Pergamon Press; Oxford: 1995.  p.741 
  • 1e Lautens M. Klute W. Tam W. Chem. Rev.  1996,  96:  49 
  • 1f Ojima I. Tzamarioudaki M. Li Z. Donovan RJ. Chem. Rev.  1996,  96:  635 
  • 1g Frühauf H.-W. Chem. Rev.  1997,  97:  523 
  • 1h Saito S. Yamamoto Y. Chem. Rev.  2000,  100:  2901 
  • 1i Malacria M. Aubert C. Renaud J.-L. In Science of Synthesis: Houben-Weyl Methods of Molecular Transformations   Vol. 1:  Lautens M. Trost BM. Georg Thieme Verlag; Stuttgart: 2001.  p.439 
  • 1j Varela JA. Saa C. Chem. Rev.  2003,  103:  3787 
  • 1k Kotha S. Brahmachary E. Lahiri K. Eur. J. Org. Chem.  2005,  4741 
  • For some recent contributions, see:
  • 2a Tanaka K. Nishida G. Wada A. Noguchi K. Angew. Chem. Int. Ed.  2004,  43:  6510 ; Angew. Chem. 2004 , 116, 6672
  • 2b Saaby S. Baxendale IR. Ley SV. Org. Biomol. Chem.  2005,  3:  3365 
  • 2c Tanaka K. Nishida G. Ogino M. Hirano M. Noguchi K. Org. Lett.  2005,  7:  3119 
  • 2d Cadierno V. García-Garrido SE. Gimeno J. J. Am. Chem. Soc.  2006,  128:  15094 
  • 2e Tekavec TN. Zuo G. Simon K. Louie J. J. Org. Chem.  2006,  71:  5834 
  • 3a Slowinski F. Aubert C. Malacria M. Adv. Synth. Catal.  2001,  343:  64 
  • 3b Hilt G. Vogler T. Hess W. Galbiati F. Chem. Commun.  2005,  1474 
  • 3c Hilt G. Hess W. Vogler T. Hengst C. J. Organomet. Chem.  2005,  690:  5170 
  • 3d Chang H.-T. Jeganmohan M. Cheng C.-H. Chem. Commun.  2005,  4955 
  • 3e Saino N. Kogure D. Okamoto S. Org. Lett.  2005,  7:  3065 
  • 3f Saino N. Amemiya F. Tanabe E. Kase K. Okamoto S. Org. Lett.  2006,  8:  1439 
  • 4a Montana JG, Fleming I, Tacke R, and Daiss J. inventors; PCT Int. Patent Appl.,  WO045625A1. 
  • 4b Montana JG, Showell GA, Fleming I, Tacke R, and Daiss J. inventors; PCT Int. Patent Appl.,  WO048390A1. 
  • 4c Montana JG, Showell GA, and Tacke R. inventors; PCT Int. Patent Appl.,  WO048391A1. 
  • 4d Daiss JO. Burschka C. Mills JS. Montana JG. Showell GA. Fleming I. Gaudon C. Ivanova D. Gronemeyer H. Tacke R. Organometallics  2005,  24:  3192 
  • 4e Miller DJ, Showell GA, Conroy R, Daiss J, Tacke R, and Tebbe D. inventors; PCT Int. Patent Appl.,  WO005443A1. 
  • 4f Büttner MW. Penka M. Doszczak L. Kraft P. Tacke R. Organometallics  2007,  in press 
  • For comparison, see:
  • 7a Bönnemann H. Brinkmann R. Schenkluhn H. Synthesis  1974,  575 
  • 7b Chiusoli GP. Costa M. Zhou Z. Gazz. Chim. Ital.  1992,  122:  441 
  • 8a Pardigon O. Tenaglia A. Buono G. J. Org. Chem.  1995,  60:  1868 
  • 8b Chen Y. Kiattansakul R. Ma B. Snyder JK. J. Org. Chem.  2001,  66:  6932 
  • 8c Hilt G. Lüers S. Schmidt F. Synthesis  2003,  634 
  • 8d Achard M. Tenaglia A. Buono G. Org. Lett.  2005,  7:  2353 
  • 8e Achard M. Mosrin M. Tenaglia A. Buono G. J. Org. Chem.  2006,  71:  2907 
  • 9 Binger P. Albus S. J. Organomet. Chem.  1995,  493:  C6 
5

6-(Tetrahydropyran-2-yloxymethyl)-1,1,4,4-tetra-methyl-1,4-disila-1,2,3,4-tetrahydronaphthalene ( 3a): 1H NMR (400.1 MHz, CDCl3): δ = 0.199 (s, 6 H, 2 × SiCH3), 0.207 (s, 3 H, SiCH3), 0.210 (s, 3 H, SiCH3), 0.99 (s, 4 H, SiCH2CH2Si), 1.44-1.58, 1.80-1.91 (m, 2 H, 4-CH2 of THP), 1.50-1.63 (m, 2 H, 5-CH2 of THP), 1.63-1.77 (m, 2 H, 3-CH2 of THP), 3.51-3.57, 3.89-3.96 (m, 2 H, 6-CH2 of THP), 4.47, 4.70 (AB system, J AB = 12.1 Hz, 2 H, CCH2O), 4.70 (t, J = 3.6 Hz, 1 H, 2-CH of THP), 7.34 [dd, A part of an AXY system, J AY = 7.6 Hz, J AX = 1.9 Hz, 1 H, 7-CH of THNaph (= 1,2,3,4-tetrahydronaphthalene)], 7.45 (dd, X part of an AXY system, J AX = 1.9 Hz, J XY = 0.6 Hz, 1 H, 5-CH of THNaph), 7.47 (dd, Y part of an AXY system, J AY = 7.6 Hz, J XY = 0.6 Hz, 1 H, 8-CH of THNaph). 13C NMR (100.6 MHz, CDCl3): δ = -1.51 (2 C, 2 × SiCH3), -1.47 (2 C, 2 × SiCH3), 7.52 (SiCH2C), 7.55 (SiCH2C), 19.4 (C-4 of THP), 25.5 (C-5 of THP), 30.6 (C-3 of THP), 62.1 (C-6 of THP), 69.0 (CCH2O), 97.8 (C-2 of THP), 127.7 (C-7 of THNaph), 132.8 (C-5 of THNaph), 133.6 (C-8 of THNaph), 137.7 (C-6 of THNaph), 144.9, 145.9 (C-8a, C-4a of THNaph). Anal. Calcd for C18H30O2Si2: C, 64.61; H, 9.04. Found: C, 64.3; H, 8.7.

6

Synthesis of 5-(Tetrahydropyran-2-yloxymethyl)-1,1,3,3-tetramethyl-1,3-disilaindane ( 3d): Bis(ethynyldimethylsilyl)methane (3.61 g, 20.0 mmol), 2-(prop-2-ynyloxy)tetrahydropyrane (3.93 g, 28.0 mmol), and a solution of cobalt(II) iodide (156 mg, 499 µmol) in MeCN (1.3 mL) were added one after another to a stirred suspension of zinc (131 mg, 2.00 mmol) in MeCN (40 mL). When the reaction mixture started to get warm (after ca. 1 min), it was cooled in an ice-bath. After 5 min the cooling bath was removed, and Et3N (1 mL) was added. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel [63-200 µm; eluent: n-pentane-Et2O, 9:1 ] to give 3d (5.14 g, 80%) as a colorless oil. 1H NMR (400.1 MHz, CDCl3): δ = -0.06 (s, 2 H, SiCH2Si), 0.265 (s, 6 H, 2 × SiCH3), 0.273 (s, 3 H, SiCH3), 0.275 (s, 3 H, SiCH3), 1.47-1.59, 1.80-1.93 (m, 2 H, 4-CH2 of THP), 1.49-1.66 (m, 2 H, 5-CH2 of THP), 1.61-1.78 (m, 2 H, 3-CH2 of THP), 3.50-3.59, 3.89-3.97 (m, 2 H, 6-CH2 of THP), 4.49, 4.79 (AB system, J AB = 11.9 Hz, 2 H, CCH2O), 4.71 (t, J = 3.5 Hz, 1 H, 2-CH of THP), 7.37 (dd, A part of an AXY system, J AY = 7.4 Hz, J AX = 1.6 Hz, 1 H, 6-CH of IND), 7.51 (dd, X part of an AXY system, J AX = 1.6 Hz, J XY = 0.7 Hz, 1 H, 4-CH of IND), 7.53 (dd, Y part of an AXY system, J AY = 7.4 Hz, J XY = 0.7 Hz, 1 H, 7-CH of IND). 13C NMR (100.6 MHz, CDCl3): δ = -2.4 (SiCH2Si), 0.540 (SiCH3), 0.546 (SiCH3), 0.552 (2 C, 2 × SiCH3), 19.4 (C-4 of THP), 25.5 (C-5 of THP), 30.6 (C-3 of THP), 62.1 (C-6 of THP), 69.2 (CCH2O), 97.9 (C-2 of THP), 128.4 (C-6 of IND), 131.2 (C-4 of IND), 131.8 (C-7 of IND), 138.3 (C-5 of IND), 149.7, 150.7 (C-3a, C-7a of IND). 29Si NMR (79.5 MHz, CDCl3): δ = 8.6, 8.8. Anal. Calcd for C17H28O2Si2: C, 63.69; H, 8.80. Found: C, 63.3; H, 8.5.