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Introduction

Catecholborane (1), known as 1,3,2-benzodioxaborole, is
a versatile boron hydride reagent commercially available
for synthetic organic chemistry. It is stable towards dry air
and easily soluble in organic solvents. Apart from its well-
known application as a new hydroborating agent in some
transformations,1 it has found a multitude of applications
in reduction of various organic functional groups, organo-
borane-mediated cyclizations, carboxyl activation of
carboxylic acids and deprotection of some functional
groups. When catecholborane was associated with chiral

oxazaborolidine and chiral transition-metal-complex
catalysts, a novel way to synthesize chiral alcohols in very
high enantioselectivities was presented. Catecholborane
can be conveniently prepared by several approaches,2 and
the preferred synthesis was the reaction of catechol with
borane–tetrahydrofuran or borane–methyl sulfide.3
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(A) Stereoselective reduction of b-hydroxy ketones to syn-1,3-diols:
Evans reported a simple, mild and effective protocol for the syn-
selective reduction of b-hydroxyl ketones using catecholborane as
reducing agent.4 In certain instances, the stereoselectivity of the
reaction could be enhanced by catalytic amounts of Rh(PPh3)Cl.

(B) Conjugate reduction of a,b-unsaturated ketones:
Evans also reported a conjugate reduction of a,b-unsaturated ke-
tones by catecholborane at room temperature.5 The resulting inter-
mediate boron enolates could further react with electrophiles to
provide many functionalized products. Under the same conditions,
other carbonyl compounds, such as a,b-unsaturated imides, esters
and amides were unreactive.

(C) Deoxygenation of sulfoxides to sulfides:
A gentle, efficient and selective approach for the deoxygenation of
sulfoxides to the corresponding sulfides with catecholborane has
been developed.6 Although deoxygenation of bulky or electron-
withdrawing sulfoxides is slow, the reaction can be greatly accel-
erated with the use of excess catecholborane or by employing a
rhodium catalyst.
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(D) Reduction of prochiral ketones to chiral alcohols:
Prochiral ketones were reduced to the corresponding chiral second-
ary alcohols using chiral catalysts and catecholborane as stoichio-
metric reductant. Yields of 70–95% and ee values of 72–90%
could be obtained for different (trifluoroacetyl)biphenyl deriva-
tives when using a catalytic amount of oxazaborolidine derived
from L-threonine.7 Enantioselective conversion of a-alkoxyke-
tones to their corresponding a-alkoxyalcohols using Zn(OTf)2–bis-
oxazoline complexes was also reported; this was proved to be a
valuable method to afford a-alkoxyalcohols in high yields and
good enantioselectivities.8

(E) Aldol cycloreduction reaction mediated by catecholborane:
Krische and co-workers have reported the intramolecular tandem
1,4-reduction–Aldol cyclization of monoenone monoketones by
catecholborane.9 This method has been applied successfully for the
construction of novel six-membered cyclic derivatives in excellent
yields with high levels of syn diastereoselectivity.

(F) Radical cyclization mediated by organoboranes derived from
catecholborane:
When using catecholborane as hydroboration reagent for dienes,
followed by radical cyclization with pyridine-2-thione-N-meth-
oxycarbonyloxy (PTOC-OMe, a Barton carbonate) as chain-trans-
fer reagent, the bicyclic a-methylenelactone frameworks could be
constructed effectively.10

(G) Carboxyl activation for synthesis of amides and lactams:
Collum and co-workers have reported a new and general route to
amides and lactams based on acyloxyboranes, the essential carbox-
yl-activation intermediates, which were prepared rapidly and
smoothly from carboxylic acids and catecholborane.11

(H) Deprotection of MEM ethers:
Using catecholborane, MEM ethers could be selectively depro-
tected in the presence of tert-butyldimethylsilyl ethers and N-Boc
groups.12 This method also tolerates a wide variety of other
functional groups.
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