physioscience 2007; 3(3): 99-108
DOI: 10.1055/s-2007-963363
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Nicht invasive kortikale Stimulation als adjuvante Therapie zur Unterstützung der funktionellen Erholung nach Schlaganfall

LiteraturübersichtNon-invasive Cortical Stimulation as Adjuvant Therapy Intervention to Promote Functional Recovery after StrokeLiterature ReviewK.-F Heise1 , C. Gerloff1 , F. C. Hummel1
  • 1Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf
Further Information

Publication History

eingereicht: 10.10.2006

angenommen: 6.2.2007

Publication Date:
24 August 2007 (online)

Zusammenfassung

Hintergrund: Über 60 % der Schlaganfallpatienten behalten bleibende funktionelle Defizite, die das berufliche und soziale Leben erheblich einschränken. Die Entwicklung wirksamer neurorehabilitativer Therapiestrategien zielt darauf ab, die funktionelle Erholung zu verbessern und damit die Lebensqualität nachhaltig zu steigern. Aus wissenschaftlichen Untersuchungen bei gesunden Probanden ergeben sich zunehmend Hinweise darauf, dass die nicht invasive kortikale Stimulation kognitive Leistungen steigern kann.

Ziel: Die Arbeit gibt einen Überblick über das Konzept der nicht invasiven kortikalen Stimulation und die Darstellung der Methoden und deren Anwendung im Hinblick auf die Bedeutung für die Schlaganfallrehabilitation.

Methode: Eine systematische Literaturrecherche wurde durchgeführt.

Ergebnisse: Erste Ergebnisse aus Studien mit kleiner Stichprobengröße sprechen dafür, dass eine Kombination aus gezieltem motorischen Training und nicht invasiver kortikaler Stimulation bei Schlaganfallpatienten zu vorübergehenden funktionellen Verbesserungen führen kann.

Schlussfolgerungen: Die nicht invasive kortikale Stimulation scheint eine Möglichkeit zu bieten, die funktionelle Erholung zu verbessern. Sie könnte sich in naher Zukunft zu einer adjuvanten Maßnahme in der neurologischen Rehabilitation entwickeln. Um diese innovative Strategie in eine tägliche klinische Anwendung zu übersetzen, sind ein besseres Verständnis der ihr zugrunde liegenden Mechanismen und ihre Evaluation in kontrollierten, multizentrischen Studien notwendig.

Abstract

Background: Over 60 % of the stroke patients show persistent functional impairments that considerably limit their occupational and social life. The development of effective therapeutic strategies for neurorehabilitation aims at increasing functional recovery and subsequently promoting quality of life in the long run. Recent studies in healthy subjects have provided increasing evidence for non-invasive cortical stimulation to enhance cognitive function.

Objective: This article gives an overview of the concept of non-invasive cortical stimulation and outlines the methods and their application with regard to their relevance in stroke rehabilitation.

Method: A systematic literature review was performed.

Results: First results of studies with stroke patients suggest that combining a specific motor training with non-invasive cortical stimulation might transiently improve functional outcome.

Conclusions: Non-invasive cortical stimulation appears to offer a promising option to enhance functional recovery. It might provide an adjuvant intervention in neurorehabilitation in the near future. For translation of this innovative strategy into routine clinical practice it is necessary to get better insight into the underlying mechanisms and to evaluate this therapeutic strategy with controlled multi-centre trials.

Literatur

  • 1 Adkins-Muir D L, Jones T A. Cortical electrical stimulation combined with rehabilitative training: enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats.  Neurol Res. 2003;  25 780-788
  • 2 Anand S, Hotson J. Transcranial magnetic stimulation: neurophysiological applications and safety.  Brain Cogn. 2002;  50 366-386
  • 3 Antal A, Nitsche M A, Paulus W. External modulation of visual perception in humans.  Neuroreport. 2001;  12 3553-3555
  • 4 Antal A, Kincses T Z, Nitsche M A. et al . Manipulation of phosphene thresholds by transcranial direct current stimulation in man.  Exp Brain Res. 2003;  150 375-378
  • 5 Antal A, Kincses T Z, Nitsche M A. et al . Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence.  Invest Ophthalmol Vis Sci. 2004;  45 702-707
  • 6 Antal A, Nitsche M A, Kincses T Z. et al . Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans.  Eur J Neurosci. 2004;  19 2888-2892
  • 7 Antal A, Nitsche M A, Kruse W. et al . Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans.  J Cogn Neurosci. 2004;  16 521-527
  • 8 Asanuma H, Keller A. Neuronal mechanisms of motor learning in mammals.  Neuroreport. 1991;  2 217-224
  • 9 Barbay S, Plautz E J, Friel K M. et al . Behavioral and neurophysiological effects of delayed training following a small ischemic infarct in primary motor cortex of squirrel monkeys.  Exp Brain Res. 2006;  169 106-116
  • 10 Barker A T, Jalinous R, Freeston I L. Non-invasive magnetic stimulation of human motor cortex.  Lancet. 1985;  1 1106-1107
  • 11 Barker A T, Freeston I L, Jalinous R. et al . Magnetic stimulation of the human brain and peripheral nervous system: an introduction and the results of an initial clinical evaluation.  Neurosurgery. 1987;  20 100-109
  • 12 Barker A T. The history and basic principles of magnetic nerve stimulation.  Electroencephalogr Clin Neurophysiol (Suppl). 1999;  51 3-21
  • 13 Barreca S, Wolf S L, Fasoli S. et al . Treatment interventions for the paretic upper limb of stroke survivors: a critical review.  Neurorehabil Neural Repair. 2003;  17 220-226
  • 14 Berendes J. Discorides Pedanius De Materia Medica - Arzneimittellehre in 5 Büchern. Stuttgart; Enke 1902
  • 15 Bindman L J, Lippold O C, Redfearn J W. The Action of Brief Polarizing Currents on the Cerebral Cortex of the Rat (1) during Current Flow and (2) in the Production of Long-Lasting After-effects.  J Physiol. 1964;  172 369-382
  • 16 Boroojerdi B, Phipps M, Kopylev L. et al . Enhancing analogic reasoning with rTMS over the left prefrontal cortex.  Neurology. 2001;  56 526-528
  • 17 Brandt S A, Ploner C J, Meyer B U. Repetitive transcranial magnetic stimulation. Possibilities, limits and safety aspects.  Nervenarzt. 1997;  68 778-784
  • 18 Brouwer B J, Schryburt-Brown K. Hand function and motor cortical output poststroke: are they related?.  Arch Phys Med Rehabil. 2006;  87 627-634
  • 19 Brown J A, Lutsep H, Cramer S C. et al . Motor cortex stimulation for enhancement of recovery after stroke: case report.  Neurol Res. 2003;  25 815-818
  • 20 Brown J A, Lutsep H L, Weinand M. et al . Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study.  Neurosurgery. 2006;  58 464-473
  • 21 Chen R, Classen J, Gerloff C. et al . Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation.  Neurology. 1997;  48 1398-1403
  • 22 Chen R. Studies of human motor physiology with transcranial magnetic stimulation.  Muscle Nerve (Suppl). 2000;  9 S26-S32
  • 23 Di Lazzaro V, Pilato F, Saturno E. et al . Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex.  J Physiol. 2005;  565 945-950
  • 24 Dong Y, Dobkin B H, Cen S Y. et al . Motor cortex activation during treatment may predict therapeutic gains in paretic hand function after stroke.  Stroke. 2006;  37 1552-1555
  • 25 Duque J, Hummel F, Celnik P. et al . Transcallosal inhibition in chronic subcortical stroke.  Neuroimage. 2005;  28 940-946
  • 26 Filipovic S R, Siebner H R, Rowe J B. et al . Modulation of cortical activity by repetitive transcranial magnetic stimulation (rTMS): a review of functional imaging studies and the potential use in dystonia.  Adv Neurol. 2004;  94 45-52
  • 27 Franzini A, Ferroli P, Dones I. et al . Chronic motor cortex stimulation for movement disorders: a promising perspective.  Neurol Res. 2003;  25 123-126
  • 28 Fregni F, Boggio P S, Mansur C G. et al . Transcranial direct current stimulation of the unaffected hemisphere in stroke patients.  Neuroreport. 2005;  16 1551-1555
  • 29 Fregni F, Boggio P S, Valle A C. et al . A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients.  Stroke. 2006;  37 2115-2122
  • 30 Gandiga P C, Hummel F C, Cohen L G. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation.  Clin Neurophysiol. 2006;  117 845-850
  • 31 Garcia-Larrea L, Peyron R, Mertens P. et al . Positron emission tomography during motor cortex stimulation for pain control.  Stereotact Funct Neurosurg. 1997;  68 141-148
  • 32 Gerloff C, Corwell B, Chen R. et al . Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences.  Brain. 1997;  120 1587-1602
  • 33 Gerloff C, Corwell B, Chen R. et al . The role of the human motor cortex in the control of complex and simple finger movement sequences.  Brain. 1998;  121 1695-1709
  • 34 Grafman J, Pascual-Leone A, Alway D. et al . Induction of a recall deficit by rapid-rate transcranial magnetic stimulation.  Neuroreport. 1994;  5 1157-1160
  • 35 Hallett M. Transcranial magnetic stimulation and the human brain.  Nature. 2000;  406 147-150
  • 36 Hess G, Donoghue J P. Long-term depression of horizontal connections in rat motor cortex.  Eur J Neurosci. 1996;  8 658-665
  • 37 Hosobuchi Y. Motor cortical stimulation for control of central deafferentation pain.  Adv Neurol. 1993;  63 215-217
  • 38 Huang Y Z, Edwards M J, Rounis E. et al . Theta burst stimulation of the human motor cortex.  Neuron. 2005;  45 201-206
  • 39 Hummel F C, Celnik P, Giraux P. et al . Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke.  Brain. 2005;  128 490-499
  • 40 Hummel F C, Cohen L G. Drivers of brain plasticity.  Curr Opin Neurol. 2005;  18 667-674
  • 41 Hummel F C, Cohen L G. Improvement of motor function with non-invasive cortical stimulation in a patient with chronic stroke.  Neurorehabil Neural Repair. 2005;  19 14-19
  • 42 Hummel F C, Cohen L G. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?.  Lancet Neurol. 2006;  5 708-712
  • 43 Hummel F C, Voller B, Celnik P. et al . Effects of brain polarization on reaction times and pinch force in chronic stroke.  BMC Neurosci. 2006;  7 73
  • 44 Iyer M B, Schleper N, Wassermann E M. Priming stimulation enhances the depressant effect of low-frequency repetitive transcranial magnetic stimulation.  J Neurosci. 2003;  23 10 867-10 872
  • 45 Iyer M B, Mattu U, Grafman J. et al . Safety and cognitive effect of frontal DC brain polarization in healthy individuals.  Neurology. 2005;  64 872-875
  • 46 Katayama Y, Fukaya C, Yamamoto T. Poststroke pain control by chronic motor cortex stimulation: neurological characteristics predicting a favorable response.  J Neurosurg. 1998;  89 585-591
  • 47 Kellaway P. The part played by the electric fish in the early history of bioelectricity and electrotherapy. The William Osler Medal Essay.  Bull Hist Med. 1946;  20 112-137
  • 48 Khedr E M, Ahmed M A, Fathy N. et al . Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke.  Neurology. 2005;  65 466-468
  • 49 Kim Y H, Park J W, Ko M H. et al . Facilitative effect of high frequency subthreshold repetitive transcranial magnetic stimulation on complex sequential motor learning in humans.  Neurosci Lett. 2004;  367 181-185
  • 50 Kim Y H, You S H, Ko M H. et al . Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke.  Stroke. 2006;  37 1471-1476
  • 51 Kincses T Z, Antal A, Nitsche M A. et al . Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human.  Neuropsychologia. 2004;  42 113-117
  • 52 Kleim J A, Bruneau R, Vandenberg P. et al . Motor cortex stimulation enhances motor recovery and reduces peri-infarct dysfunction following ischemic insult.  Neurol Res. 2003;  25 789-793
  • 53 Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology.  Lancet Neurol. 2003;  2 145-156
  • 54 Kobayashi M, Hutchinson S, Theoret H. et al . Repetitive TMS of the motor cortex improves ipsilateral sequential simple finger movements.  Neurology. 2004;  62 91-98
  • 55 Kolominsky-Rabas P. Schlaganfall in Deutschland. Anhaltszahlen zum Schlaganfall aus dem Bevölkerungs-basierten Erlanger Schlaganfallregister im Rahmen der Gesundheitsberichterstattung (GBE) des Bundes. Erlangen-Nürnberg; Interdisziplinäres Zentrum für Public Health der Universität Erlangen-Nürnberg (IZPH) 2004
  • 56 Kolominsky-Rabas P L, Heuschmann P U, Marschall D. et al . Lifetime cost of ischemic stroke in Germany: results and national projections from a population-based stroke registry: the Erlangen Stroke Project.  Stroke. 2006;  37 1179-1183
  • 57 Kwakkel G, Peppen van R, Wagenaar R C. et al . Effects of augmented exercise therapy time after stroke: a meta-analysis.  Stroke. 2004;  35 2529-2539
  • 58 Lai S M, Studenski S, Duncan P W. et al . Persisting consequences of stroke measured by the Stroke Impact Scale.  Stroke. 2002;  33 1840-1844
  • 59 Lang N, Nitsche M A, Paulus W. et al . Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability.  Exp Brain Res. 2004;  156 439-443
  • 60 Liebetanz D, Nitsche M A, Tergau F. et al . Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability.  Brain. 2002;  125 2238-2247
  • 61 Liebetanz D, Fregni F, Monte-Silva K K. et al . After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression.  Neurosci Lett. 2006;  398 85-90
  • 62 Lotze M, Markert J, Sauseng P. et al . The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion.  J Neurosci. 2006;  26 6096-6102
  • 63 Machii K, Cohen D, Ramos-Estebanez C. et al . Safety of rTMS to non-motor cortical areas in healthy participants and patients.  Clin Neurophysiol. 2006;  117 455-471
  • 64 Mackay J, Mensah G. The Atlas of Heart Disease and Stroke. Geneva; World Health Organisation 2004
  • 65 Maeda F, Keenan J P, Tormos J M. et al . Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation.  Clin Neurophysiol. 2000;  111 800-805
  • 66 Mansur C G, Fregni F, Boggio P S. et al . A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients.  Neurology. 2005;  64 1802-1904
  • 67 Marshall L, Molle M, Hallschmid M. et al . Transcranial direct current stimulation during sleep improves declarative memory.  J Neurosci. 2004;  24 9985-9992
  • 68 Martin P I, Naeser M A, Theoret H. et al . Transcranial magnetic stimulation as a complementary treatment for aphasia.  Semin Speech Lang. 2004;  25 181-191
  • 69 Murase N, Duque J, Mazzocchio R. et al . Influence of interhemispheric interactions on motor function in chronic stroke.  Ann Neurol. 2004;  55 400-409
  • 70 Nguyen J P, Pollin B, Feve A. et al . Improvement of action tremor by chronic cortical stimulation.  Mov Disord. 1998;  13 84-88
  • 71 Nitsche M A, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.  J Physiol. 2000;  527 633-639
  • 72 Nitsche M A, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans.  Neurology. 2001;  57 1899-1901
  • 73 Nitsche M A, Fricke K, Henschke U. et al . Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans.  J Physiol. 2003;  553 293-301
  • 74 Nitsche M A, Liebetanz D, Antal A. et al . Modulation of cortical excitability by weak direct current stimulation - technical, safety and functional aspects.  Suppl Clin Neurophysiol. 2003;  56 255-276
  • 75 Nitsche M A, Nitsche M S, Klein C C. et al . Level of action of cathodal DC polarisation induced inhibition of the human motor cortex.  Clin Neurophysiol. 2003;  114 600-604
  • 76 Nitsche M A, Schauenburg A, Lang N. et al . Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human.  J Cogn Neurosci. 2003;  15 619-626
  • 77 Nitsche M A, Seeber A, Frommann K. et al . Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex.  J Physiol. 2005;  568 291-303
  • 78 Oliveri M, Rossini P M, Traversa R. et al . Left frontal transcranial magnetic stimulation reduces contralesional extinction in patients with unilateral right brain damage.  Brain. 1999;  122 1731-1739
  • 79 Pascual-Leone A, Houser C M, Reese K. et al . Safety of rapid-rate transcranial magnetic stimulation in normal volunteers.  Electroencephalogr Clin Neurophysiol. 1993;  89 120-130
  • 80 Pascual-Leone A, Gomez-Tortosa E, Grafman J. et al . Induction of visual extinction by rapid-rate transcranial magnetic stimulation of parietal lobe.  Neurology. 1994;  44 494-498
  • 81 Pascual-Leone A, Valls-Sole J, Wassermann E M. et al . Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex.  Brain. 1994;  117 847-858
  • 82 Paulus W. Transcranial direct current stimulation (tDCS).  Suppl Clin Neurophysiol. 2003;  56 249-254
  • 83 Peyron R, Garcia-Larrea L, Deiber M P. et al . Electrical stimulation of precentral cortical area in the treatment of central pain: electrophysiological and PET study.  Pain. 1995;  62 275-286
  • 84 Plautz E J, Barbay S, Frost S B. et al . Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates.  Neurol Res. 2003;  25 801-810
  • 85 Plewnia C, Lotze M, Gerloff C. Disinhibition of the contralateral motor cortex by low-frequency rTMS.  Neuroreport. 2003;  14 609-612
  • 86 Priori A. Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability.  Clin Neurophysiol. 2003;  114 589-595
  • 87 Purpura D P, McMurtry J G. Intracellular Activities and Evoked Potential Changes during Polarization of Motor Cortex.  J Neurophysiol. 1965;  28 166-185
  • 88 Rioult-Pedotti M S, Friedman D, Donoghue J P. Learning-induced LTP in neocortex.  Science. 2000;  290 533-536
  • 89 Rogalewski A, Breitenstein C, Nitsche M A. et al . Transcranial direct current stimulation disrupts tactile perception.  Eur J Neurosci. 2004;  20 313-316
  • 90 Schambra H M, Sawaki L, Cohen L G. Modulation of excitability of human motor cortex (M1) by 1 Hz transcranial magnetic stimulation of the contralateral M1.  Clin Neurophysiol. 2003;  114 130-133
  • 91 Siebner H R, Rothwell J. Transcranial magnetic stimulation: new insights into representational cortical plasticity.  Exp Brain Res. 2003;  148 1-16
  • 92 Takeuchi N, Chuma T, Matsuo Y. et al . Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke.  Stroke. 2005;  36 2681-2686
  • 93 Teskey G C, Flynn C, Goertzen C D. et al . Cortical stimulation improves skilled forelimb use following a focal ischemic infarct in the rat.  Neurol Res. 2003;  25 794-800
  • 94 Truelsen T, Piechowski-Jozwiak B, Bonita R. et al . Stroke incidence and prevalence in Europe: a review of available data.  Eur J Neurol. 2006;  13 581-598
  • 95 Vines B W, Nair D G, Schlaug G. Contralateral and ipsilateral motor effects after transcranial direct current stimulation.  Neuroreport. 2006;  17 671-674
  • 96 Walsh V, Cowey A. Transcranial magnetic stimulation and cognitive neuroscience.  Nat Rev Neurosci. 2000;  1 73-79
  • 97 Ward A, Payne K A, Caro J J. et al . Care needs and economic consequences after acute ischemic stroke: the Erlangen Stroke Project.  Eur J Neurol. 2005;  12 264-267
  • 98 Wassermann E M. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, 5. - 7. June 1996.  Electroencephalogr Clin Neurophysiol. 1998;  108 1-16
  • 99 Wassermann E M, Wedegaertner F R, Ziemann U. et al . Crossed reduction of human motor cortex excitability by 1-Hz transcranial magnetic stimulation.  Neurosci Lett. 1998;  250 141-144
  • 100 Wassermann E M, Grafman J. Recharging cognition with DC brain polarization.  Trends Cogn Sci. 2005;  9 503-505
  • 101 Yamamoto T, Katayama Y, Hirayama T. et al . Pharmacological classification of central post-stroke pain: comparison with the results of chronic motor cortex stimulation therapy.  Pain. 1997;  72 5-12

Kirstin-Friederike Heise, PT, MSc Neurophysiotherapy, BSc

Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf

Email: kheise@uke.uni-hamburg.de

    >