Fortschr Neurol Psychiatr 2007; 75(10): 607-616
DOI: 10.1055/s-2007-959203
Originalarbeit
© Georg Thieme Verlag Stuttgart · New York

Störungen der Handlungskontrolle im Kontext neuropsychologischer Befunde bei Schizophrenie

Impairments of Action Control in the Context of Neuropsychological Findings in SchizophreniaB.  Reuter1 , N.  Kathmann1
  • 1Humboldt-Universität zu Berlin, Institut für Psychologie
Further Information

Publication History

Publication Date:
23 March 2007 (online)

Zusammenfassung

Auf Grundlage eines Überblicks über neurobiologische und neuropsychologische Befunde bei Schizophrenie wird dargestellt, wie experimentell-neuropsychologische Forschung zum Verständnis schizophrener Erkrankungen beitragen kann. Es wird gezeigt, dass kognitive Leistungsdefizite ein zentrales Merkmal schizophrener Erkrankungen sind. Sie stehen in enger Beziehung zu hirnphysiologischen Veränderungen und reflektieren vermutlich Störungen basaler kognitiver Funktionen. Die Identifikation der betroffenen Funktionen ist dadurch erschwert, dass die Bearbeitung von Testaufgaben in der Regel mehrere kognitive Prozesse beansprucht. Eine Isolation einzelner Funktionen ist jedoch möglich durch eine experimentelle Variation von Aufgaben, die einzelne, gut definierbare Prozesse ansprechen. Als Beispiele werden mehrere Arbeiten vorgestellt, in denen Störungen der Steuerung schneller Augenbewegungen (Sakkaden) experimentell untersucht wurden. In der Antisakkaden-Aufgabe zeigen Schizophrenie-Patienten deutliche, zeitstabile und vielfach replizierte Leistungsdefizite. Die vorgestellten Arbeiten weisen darauf hin, dass diese Defizite vor allem eine Schwächung der willkürlichen Initiierung von Handlungen reflektieren.

Abstract

Based on a review of neurobiological and neuropsychological findings in schizophrenia, we illustrate how experimental neuropsychological research contributes to the understanding of schizophrenia. It is shown that cognitive performance deficits are a central feature of schizophrenia. They are closely connected with changes of brain physiology and appear to reflect disturbances of basic cognitive functions. It is difficult to identify these functions, because task performance usually taps various cognitive processes. However, isolation of functions is possible by experimental variation of tasks that require a small number of well defined processes. To illustrate this, we review several recent studies that experimentally analyzed deficits in the control of fast eye movements (saccades). In the antisaccade task schizophrenia patients show distinct, temporally stable and often replicated performance deficits. The reviewed studies suggest that these deficits predominantly reflect a weakness in the volitional initiation of action.

Literatur

  • 1 Dilling H, Mombour W, Schmidt M H. Internationale Klassifikation psychischer Störungen ICD-10 Kapitel V (F) Klinisch-diagnostische Leitlinien. Bern: Huber 2005
  • 2 Saß H, Wittchen H U, Zaudig M. Diagnostisches und Statistisches Manual Psychischer Störungen DSM IV. Göttingen, Germany: Hogrefe 1996
  • 3 Andreasen N C, Flaum M, Swayze V W, Tyrrell G, Arndt S. Positive and negative symptoms in schizophrenia: A critical reappraisal.  Arch Gen Psychiatry. 1990;  47 (7) 615-621
  • 4 Kirkpatrick B, Buchanan R W, Ross D E, Carpenter W T. A separate disease within the syndrome of schizophrenia.  Arch Gen Psychiatry. 2001;  58 (2) 165-171
  • 5 Gaebel W, Wölwer W. Affektstörungen schizophren Kranker. Stuttgart: Kohlhammer 1996
  • 6 Mueser K T, Mcgurk S R. Schizophrenia.  Lancet. 2004;  363 (9426) 2063-2072
  • 7 Nuechterlein K H, Dawson M E. A Heuristic Vulnerability Stress Model of Schizophrenic Episodes.  Schizophr Bull. 1984;  10 (2) 300-312
  • 8 Kringlen E. Twin studies in schizophrenia with special emphasis on concordance figures.  Am J Med Genet. 2000;  97 (1) 4-11
  • 9 Sullivan P F, Kendler K S, Neale M C. Schizophrenia as a complex trait - Evidence from a meta-analysis of twin studies.  Arch Gen Psychiatry. 2003;  60 (12) 1187-1192
  • 10 Harrison P J, Owen M J. Genes for schizophrenia? Recent findings and their pathophysiological implications.  Lancet. 2003;  361 (9355) 417-419
  • 11 Cannon M, Jones P B, Murray R M. Obstetric complications and schizophrenia: Historical and meta-analytic review.  Am J Psychiatry. 2002;  159 (7) 1080-1092
  • 12 Susser E S, Lin S P. Schizophrenia After Prenatal Exposure to the Dutch Hunger Winter of 1944 - 1945.  Arch Gen Psychiatry. 1992;  49 (12) 983-988
  • 13 Takei N, Mortensen P B, Klaening U, Murray R M, Sham P C, O'Callaghan E, Munk-Jorgensen P. Relationship between in utero exposure to influenza epidemics and risk of schizophrenia in Denmark.  Biol Psychiatry. 1996;  40 (9) 817-824
  • 14 Thomas H V, Dalman C, David A S, Gentz J, Lewis G, Allebeck P. Obstetric complications and risk of schizophrenia - Effect of gender, age at diagnosis and maternal history of psychosis.  Br J Psychiatry. 2001;  179 409-414
  • 15 Allin M, Murray R. Schizophrenia: a neurodevelopmental or neurodegenerative disorder?.  Curr Opin Psychiatr. 2002;  15 (1) 9-15
  • 16 Weinberger D R. From Neuropathology to Neurodevelopment.  Lancet. 1995;  346 (8974) 552-557
  • 17 Andreasen N C, Flashman L, Flaum M, Arndt S, Swayze V, Oleary D S, Ehrhardt J C, Yuh W TC. Regional Brain Abnormalities in Schizophrenia Measured with Magnetic-Resonance-Imaging.  Jama-Journal of the American Medical Association. 1994;  272 (22) 1763-1769
  • 18 Salisbury D F, Griggs C B, Shenton M E, McCarley R W. The NoGo P300 ‘anteriorization’ effect and response inhibition.  Clin Neurophysiol. 2004;  115 (7) 1550-1558
  • 19 Shenton M E, Dickey C C, Frumin M, McCarley R W. A review of MRI findings in schizophrenia.  Schizophr Res. 2001;  49 (1 - 2) 1-52
  • 20 Wright I C, Rabe-Hesketh S, Woodruff P WR, David A S, Murray R M, Bullmore E T. Meta-analysis of regional brain volumes in schizophrenia.  Am J Psychiatry. 2000;  157 (1) 16-25
  • 21 Byne W, Buchsbaum M S, Mattiace L A, Hazlett E A, Kemether E, Elhakem S L, Purohit D P, Haroutunian V, Jones L. Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia.  Am J Psychiatry. 2002;  159 (1) 59-65
  • 22 Lawrie S M, Abukmeil S S. Brain abnormality in schizophrenia - A systematic and quantitative review of volumetric magnetic resonance imaging studies.  Br J Psychiatry. 1998;  172 110-120
  • 23 Bogerts B. Bedeutung der Frontallappen für die Pathophysiologie schizophrener Erkrankungen. In: Förstl H (Hrsg). Frontalhirn: Funktionen und Erkrankungen. Heidelberg: Springer 2005: 213-231
  • 24 Goldstein J M, Goodman J M, Seidman L J, Kennedy D N, Makris N, Lee H, Tourville J, Caviness V S, Faraone S V, Tsuang M T. Cortical abnormalities in schizophrenia identified by structural magnetic resonance imaging.  Arch Gen Psychiatry. 1999;  56 (6) 537-547
  • 25 Gur R E, Cowell P E, Latshaw A, Turetsky B I, Grossman R I, Arnold S E, Bilker W B, Gur R C. Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia.  Arch Gen Psychiatry. 2000;  57 (8) 761-768
  • 26 Kuperberg G R, Broome M R, McGuire P K, David A S, Eddy M, Ozawa F, Goff D, West W C, Williams S CR, Kouwe A JW van der, Salat D H, Dale A M, Fischl B. Regionally localized thinning of the cerebral cortex in schizophrenia.  Arch Gen Psychiatry. 2003;  60 (9) 878-888
  • 27 Rajkowska G, Selemon L D, Goldman-Rakic P S. Neuronal and glial somal size in the prefrontal cortex - A postmortem morphometric study of schizophrenia and Huntington disease.  Arch Gen Psychiatry. 1998;  55 (3) 215-224
  • 28 Selemon L D, Rajkowska G, Goldman-Rakic P S. Elevated neuronal density in prefrontal area 46 in brains from schizophrenic patients: application of a three-dimensional, stereologic counting method.  J Comp Neurol. 1998;  392 (3) 402-412
  • 29 Glantz L A, Lewis D A. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia.  Arch Gen Psychiatry. 2000;  57 (1) 65-73
  • 30 Jakob H, Beckmann H. Prenatal developmental disturbances in the limbic allocortex in schizophrenics.  J Neural Transm. 1986;  65 (3 - 4) 303-326
  • 31 Lauer M, Beckmann H, Senitz D. Increased frequency of dentate granule cells with basal dendrites in the hippocampal formation of schizophrenics.  Psychiatr Res-Neuroimaging. 2003;  122 (2) 89-97
  • 32 Zaidel D W, Esiri M M, Harrison P J. Size, shape, and orientation of neurons in the left and right hippocampus: investigation of normal asymmetries and alterations in schizophrenia.  Am J Psychiatry. 1997;  154 (6) 812-818
  • 33 Harrison P J. The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications.  Psychopharmacology. 2004;  174 (1) 151-162
  • 34 Aston C, Jiang L X, Sokolov B P. Microarray analysis of postmortem temporal cortex from patients with schizophrenia.  J Neurosci Res. 2004;  77 (6) 858-866
  • 35 Hof P R, Haroutunian V, Copland C, Davis K L, Buxbaum J D. Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia.  Neurochem Res. 2002;  27 (10) 1193-1200
  • 36 Kubicki M, McCarley R W, Shenton M E. Evidence for white matter abnormalities in schizophrenia.  Curr Opin Psychiatr. 2005;  18 (2) 121-134
  • 37 Carlsson A, Lindqvist M. Effect of chlorpromazine or haloperidol on formation of 3methoxytramine and normetanephrine in mouse brain.  Acta Pharmacol Toxicol. 1963;  20 140-144
  • 38 Laruelle M, Frankle W G, Narendran R, Kegeles L S, Abi-Dargham A. Mechanism of action of antipsychotic drugs: From dopamine D-2 receptor antagonism to glutamate NMDA facilitation.  Clin Ther. 2005;  27 S16-S24
  • 39 Abi-Dargham A, Gil R, Krystal J, Baldwin R M, Seibyl J P, Bowers M, Dyck C H van, Charney D S, Innis R B, Laruelle M. Increased striatal dopamine transmission in schizophrenia: Confirmation in a second cohort.  Am J Psychiatry. 1998;  155 (6) 761-767
  • 40 Möller H J. Antipsychotic and antidepressive effects of second generation antipsychotics - Two different pharmacological mechanisms?.  Eur Arch Psychiatry Clin Neurosci. 2005;  255 (3) 190-201
  • 41 Abi-Dargham A. Do we still believe in the dopamine hypothesis? New data bring new evidence.  Int J Neuropsychopharmacol. 2004;  7 S1-S5
  • 42 Goff D C, Coyle J T. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia.  Am J Psychiatry. 2001;  158 (9) 1367-1377
  • 43 Carlsson A, Waters N, Waters S, Carlsson M L. Network interactions in schizophrenia - therapeutic implications.  Brain Res Rev. 2000;  31 (2 - 3) 342-349
  • 44 Sesack S R, Carr D B. Selective prefrontal cortex inputs to dopamine cells: implications for schizophrenia.  Physiol & Behav. 2002;  77 (4 - 5) 513-517
  • 45 Coyle J T. The GABA-glutamate connection in schizophrenia: which is the proximate cause?.  Biochem Pharmacol. 2004;  68 (8) 1507-1514
  • 46 Coyle J T, Tsai G. The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia.  Psychopharmacology. 2004;  174 (1) 32-38
  • 47 Winterer G, Weinberger D R. Genes, dopamine and cortical signal-to-noise ratio in schizophrenia.  Trends Neurosci. 2004;  27 (11) 683-690
  • 48 Akil M, Pierri J N, Whitehead R E, Edgar C L, Mohila C, Sampson A R, Lewis D A. Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects.  Am J Psychiatry. 1999;  156 (10) 1580-1589
  • 49 Weinberger D R, Berman K F, Illowsky B P. Physiological Dysfunction of Dorsolateral Prefrontal Cortex in Schizophrenia. 3. A New Cohort and Evidence for A Monoaminergic Mechanism.  Arch Gen Psychiatry. 1988;  45 (7) 609-615
  • 50 Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y Y, Hwang D R, Keilp J, Kochan L, Heertum R van, Gorman J M, Laruelle M. Prefrontal dopamine D-1 receptors and working memory in schizophrenia.  J Neurosci. 2002;  22 (9) 3708-3719
  • 51 Heinrichs R W. The primacy of cognition in schizophrenia.  Am Psychol. 2005;  60 (3) 229-242
  • 52 Thoma P, Daum I. [Neurocognitive changes and negative symptoms in schizophrenia].  Fortschr Neurol Psychiatr. 2005;  73 (6) 333-342
  • 53 Heinrichs R W, Zakzanis K K. Neurocognitive deficit in schizophrenia: A quantitative review of the evidence.  Neuropsychology. 1998;  12 (3) 426-445
  • 54 Erlenmeyer-Kimling L, Rock D, Roberts S A, Janal M, Kestenbaum C, Cornblatt B, Adamo U H, Gottesman I I. Attention, memory, and motor skills as childhood predictors of schizophrenia-related psychoses: The New York high-risk project.  Am J Psychiatry. 2000;  157 (9) 1416-1422
  • 55 Fuller R, Nopoulos P, Arndt S, O'Leary D, Ho B C, Andreasen N C. Longitudinal assessment of premorbid cognitive functioning in patients with schizophrenia through examination of standardized scholastic test performance.  Am J Psychiatry. 2002;  159 (7) 1183-1189
  • 56 Albus M, Hubmann W, Scherer J, Dreikorn B, Hecht S, Sobizack N, Mohr F. A prospective 2-year follow-up study of neurocognitive functioning in patients with first-episode schizophrenia.  Eur Arch Psychiatry Clin Neurosci. 2002;  252 (6) 262-267
  • 57 Daban C, Amado I, Bourdel M C, Loo H, Olie J P, Poirier M F, Krebs M O. Cognitive dysfunctions in medicated and unmedicated patients with recent-onset schizophrenia.  J Psychiatr Res. 2005;  39 (4) 391-398
  • 58 Gold S, Arndt S, Nopoulos P, O'Leary D S, Andreasen N C. Longitudinal study of cognitive function in first-episode and recent-onset schizophrenia.  Am J Psychiatry. 1999;  156 (9) 1342-1348
  • 59 Rund B R. A review of longitudinal studies of cognitive functions in schizophrenia patients.  Schizophr Bull. 1998;  24 (3) 425-435
  • 60 Mishara A L, Goldberg T E. A meta-analysis and critical review of the effects of conventional neuroleptic treatment on cognition in schizophrenia: Opening a closed book.  Biol Psychiatry. 2004;  55 (10) 1013-1022
  • 61 Weickert T W, Goldberg T E, Marenco S, Bigelow L B, Egan M F, Weinberger D R. Comparison of cognitive performances during a placebo period and an atypical antipsychotic treatment period in schizophrenia: Critical examination of confounds.  Neuropsychopharmacology. 2003;  28 (8) 1491-1500
  • 62 Hoff A L, Svetina C, Shields G, Stewart J, Delisi L E. Ten year longitudinal study of neuropsychological functioning subsequent to a first episode of schizophrenia.  Schizophr Res. 2005;  78 (1) 27-34
  • 63 Kurtz M M. Neurocognitive impairment across the lifespan in schizophrenia: an update.  Schizophr Res. 2005;  74 (1) 15-26
  • 64 Green M F, Kern R S, Heaton R K. Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS.  Schizophr Res. 2004;  72 (1) 41-51
  • 65 Marder S R, Fenton W. Measurement and Treatment Research to Improve Cognition in Schizophrenia: NIMH MATRICS initiative to support the development of agents for improving cognition in schizophrenia.  Schizophr Res. 2004;  72 (1) 5-9
  • 66 Pilling S, Bebbington P, Kuipers E, Garety P, Geddes J, Martindale B, Orbach G, Morgan C. Psychological treatments in schizophrenia: II. Meta-analysis of randomized controlled trials of social skills training and cognitive remediation.  Psychol Med. 2002;  32 (5) 783-791
  • 67 Sartory G, Zorn C, Groetzinger G, Windgassen K. Computerized cognitive remediation improves verbal learning and processing speed in schizophrenia.  Schizophr Res. 2005;  75 (2 - 3) 219-223
  • 68 Kathmann N. Neurokognitive Grundlagen schizophrener Symptome: Ein Überblick.  Zeitschr klin Psychol Psychother. 2001;  30 (4) 241-250
  • 69 Pantelis C, Maruff P. The cognitive neuropsychiatric approach to investigating the neurobiology of schizophrenia and other disorders.  Journal of Psychosomatic Research. 2002;  53 (2) 655-664
  • 70 Gottesman I I, Gould T D. The endophenotype concept in psychiatry: Etymology and strategic intentions.  Am J Psychiatry. 2003;  160 (4) 636-645
  • 71 Opgen-Rhein C, Neuhaus A, Urbanek C, Dettling M. Neue Ansätze in der Schizophrenieforschung: Die Bedeutung von neuropsychologischen Endophänotypen und deren möglicher Nutzen [New strategies in schizophrenia: impact of endophentotypes].  Psychiatr Prax. 2004;  3 S194-S199
  • 72 Gasperoni T L, Ekelund J, Huttunen M, Palmer C GS, Tuulio-Henriksson A, Lonnqvist J, Kaprio J, Peltonen L, Cannon T D. Genetic linkage and association between chromosome 1q and working memory function in schizophrenia.  American Journal of Medical Genetics Part B-Neuropsychiatric Genetics. 2003;  116B (1) 8-16
  • 73 Burdick K E, Hodgkinson C A, Szeszko P R, Lencz T, Ekholm J M, Kane J M, Goldman D, Malhotra A K. DISC1 and neurocognitive function in schizophrenia.  Neuroreport. 2005;  16 (12) 1399-1402
  • 74 Cannon T D, Hennah W, Erp T GM van, Thompson P M, Lonnqvist J, Huttunen M, Gasperoni T, Tuulio-Henriksson A, Pirkola T, Toga A W, Kaprio J, Mazziotta J, Peltonen L. Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory.  Arch Gen Psychiatry. 2005;  62 (11) 1205-1213
  • 75 Cannon T D, Glahn D C, Kim J, Erp T G van, Karlsgodt K, Cohen M S, Nuechterlein K H, Bava S, Shirinyan D. Dorsolateral prefrontal cortex activity during maintenance and manipulation of information in working memory in patients with schizophrenia.  Arch Gen Psychiatry. 2005;  62 (10) 1071-1080
  • 76 Gruber O, Gruber E, Falkai P. Neuronale Korrelate gestörter Arbeitsgedächtnisfunktionen bei schizophrenen Patienten. Ansätze zur Etablierung neurokognitiver Endophänotypen psychiatrischer Erkrankungen [Neural correlates of working memory deficits in schizophrenic patients. Ways to establish neurocognitive endophenotypes of psychiatric disorders].  Radiologe. 2005;  45 (2) 153-160
  • 77 Juckel G, Schlagenhauf F, Koslowski M, Wustenberg T, Villringer A, Knutson B, Wrase J, Heinz A. Dysfunction of ventral striatal reward prediction in schizophrenia.  Neuroimage. 2006;  29 409-416
  • 78 Frith C D. The Cognitive Neuropsychology of Schizophrenia. Hove, East Sussex, UK: Erlbaum 1992
  • 79 Miyake A, Emerson J E, Friedman N P. Assessment of executive functions in clinical settings: problems and recommendations.  Seminars in Speech and Language. 2000;  21 (2) 169-183
  • 80 Cornblatt B A, Keilp J G. Impaired attention, genetics, and the pathophysiology of schizophrenia.  Schizophr Bull. 1994;  20 (1) 31-46
  • 81 Royall D R, Lauterbach E C, Cummings J L, Reeve A, Rummans T A, Kaufer D I, LaFrance W C, Coffey C E. Executive control function: A review of its promise and challenges for clinical research - A report from the Committee on Research of the American Neuropsychiatric Association.  J Neuropsychiatry Clin Neurosci. 2002;  14 (4) 377-405
  • 82 Logan G D. Executive control of thought and action.  Acta Psychol. 1985;  60 (2 - 3) 193-210
  • 83 Stroop J R. Studies of interference in serial verbal reactions.  Journal of Experimental Psychology. 1935;  18 643-662
  • 84 Macleod C M. Half A Century of Research on the Stroop Effect - An Integrative Review.  Psychol Bull. 1991;  109 (2) 163-203
  • 85 Henik A, Salo R. Schizophrenia and the stroop effect.  Behav Cogn Neurosci Rev. 2004;  3 (1) 42-59
  • 86 Grube B S, Bilder R M, Goldman R S. Meta-analysis of symptom factors in schizophrenia.  Schizophr Res. 1998;  31(2 - 3) 113-120
  • 87 Wilson B A, Aldermann N, Burgess P W, Emslie H, Evans J J. Behavioral Assessment of the Dysexecutive Syndrome. Bury St. Edmunds, UK: Thames Valley Test Company 1996
  • 88 Evans J J, Chua S E, McKenna P J, Wilson B A. Assessment of the dysexecutive syndrome in schizophrenia.  Psychol Med. 1997;  27 (3) 635-646
  • 89 Semkovska M, Bedard M A, Godbout L, Limoge F, Stip E. Assessment of executive dysfunction during activities of daily living in schizophrenia.  Schizophr Res. 2004;  69 (2 - 3) 289-300
  • 90 Kathmann N. Okulomotorische Störungen. In: Jahn Th (Hrsg). Bewegungsstörungen bei psychischen Erkrankungen. Berlin: Springer 2004: 129-146
  • 91 Broerse A, Crawford T J, Boer J A den. Parsing cognition in schizophrenia using saccadic eye movements: A selective overview.  Neuropsychologia. 2001;  39 (7) 742-756
  • 92 Brownstein J, Krastoshevsky O, McCollum C, Kundamal S, Matthysse S, Holzman P S, Mendell N R, Levy D L. Antisaccade performance is abnormal in schizophrenia patients but not in their biological relatives.  Schizophr Res. 2003;  63 (1 - 2) 13-25
  • 93 Crawford T J, Haeger B, Kennard C, Reveley M A, Henderson L. Saccadic Abnormalities in Psychotic-Patients. I. Neuroleptic-Free Psychotic-Patients.  Psychol Med. 1995;  25 (3) 461-471
  • 94 Fukushima J, Fukushima K, Morita N, Yamashita I. Further analysis of the control of voluntary saccadic eye movements in schizophrenic patients.  Biol Psychiatry. 1990;  28 (11) 943-958
  • 95 Karoumi B, Ventre-Dominey J, Vighetto A, Dalery J, d'Amato T. Saccadic eye movements in schizophrenic patients.  Psychiatry Res. 1998;  77 (1) 9-19
  • 96 Yantis S, Hillstrom A P. Stimulus-Driven Attentional Capture - Evidence from Equiluminant Visual Objects.  J Exp Psychol Hum Percept Perform. 1994;  20 (1) 95-107
  • 97 Yantis S, Jonides J. Attentional capture by abrupt onsets: New perceptual objects or visual masking?.  J Exp Psychol Hum Percept Perform. 1996;  22 (6) 1505-1513
  • 98 Harris C M, Wolpert D M. Signal-dependent noise determines motor planning.  Nature. 1998;  394 (6695) 780-784
  • 99 Calkins M E, Ones D S, Iacono W G. Saccade and fixation system functioning in schizophrenia: A meta-analytic review.  Schizophr Res. 2001;  49 212-213
  • 100 Pierrot-Deseilligny C, Muri R M, Ploner C J, Gaymard B, Demeret S, Rivaud-Pechoux S. Decisional role of the dorsolateral prefrontal cortex in ocular motor behaviour.  Brain. 2003;  126 1460-1473
  • 101 Ploner C J, Gaymard B M, Rivaud-Pechoux S, Pierrot-Deseilligny C. The prefrontal substrate of reflexive saccade inhibition in humans.  Biol Psychiatry. 2005;  57 (10) 1159-1165
  • 102 Munoz D P, Everling S. Look away: The anti-saccade task and the voluntary control of eye movement.  Nat Rev Neurosci. 2004;  5 (3) 218-228
  • 103 Connolly J D, Goodale M A, Menon R S, Munoz D P. Human fMRI evidence for the neural correlates of preparatory set.  Nature Neuroscience. 2002;  5 (12) 1345-1352
  • 104 Curtis C E, D'Esposito M. Success and failure suppressing reflexive behavior.  Journal of Cognitive Neuroscience. 2003;  15 (3) 409-418
  • 105 Ford K A, Goltz H C, Brown M RG, Everling S. Neural processes associated with antisaccade task performance investigated with event-related fMRI.  J Neurophysiol. 2005;  94 (1) 429-440
  • 106 McDowell J E, Brown G G, Paulus M, Martinez A, Stewart S E, Dubowitz D J, Braff D L. Neural correlates of refixation saccades and antisaccades in normal and schizophrenia subjects.  Biol Psychiatry. 2002;  51 (3) 216-223
  • 107 Crawford T J, Bennett D, Lekwuwa G, Shaunak S, Deakin J FW. Cognition and the inhibitory control of saccades in schizophrenia and Parkinson’s disease. In: Hyönä J, Munoz DP, Heide W, Radach R (Hrsg). The brain’s eye: neurobiological and clinical aspects of oculomotor research. Amsterdam: Elsevier 2002: 449-466
  • 108 Curtis C E, Calkins M E, Iacono W G. Saccadic disinhibition in schizophrenia patients and their first-degree biological relatives - A parametric study of the effects of increasing inhibitory load.  Exp Brain Res. 2001;  137 (2) 228-236
  • 109 McDowell J E, Clementz B A. Behavioral and brain imaging studies of saccadic performance in schizophrenia.  Biol Psychol. 2001;  57 (1 - 3) 5-22
  • 110 Reuter B, Rakusan L, Kathmann N. Poor antisaccade performance in schizophrenia: An inhibition deficit?.  Psychiatry Res. 2005;  135 (1) 1-10
  • 111 Reuter B, Jäger M, Bottlender R, Kathmann N. Impaired saccade control of schizophrenia patients: the role of volitional saccade generation. Neuropsychologia 2007; in press
  • 112 Hutton S B, Joyce E M, Barnes T-R E, Kennard C. Saccadic distractibility in first-episode schizophrenia.  Neuropsychologia. 2002;  40 1729-1736
  • 113 Gooding D C, Grabowski J A, Hendershot C S. Fixation stability in schizophrenia, bipolar, and control subjects.  Psychiatry Res. 2000;  97 (2 - 3) 119-128
  • 114 Kissler J, Clementz B A. Fixation stability among schizophrenia patients.  Neuropsychobiology. 1998;  38 (2) 57-62
  • 115 Anderson T J, Jenkins I H, Brooks D J, Hawken M B, Frackowiak R S, Kennard C. Cortical control of saccades and fixation in man. A PET study.  Brain. 1994;  117 (5) 1073-1084
  • 116 Petit L, Dubois S, Tzourio N, Dejardin S, Crivello F, Michel C, Etard O, Denise P, Roucoux A, Mazoyer B. PET study of the human foveal fixation system.  Hum Brain Mapp. 1999;  8 (1) 28-43
  • 117 Reuter B, Kathmann N. Using saccade tasks as a tool to analyze executive dysfunctions in schizophrenia.  Acta Psychol. 2004;  115 (2 - 3) 255-269
  • 118 Klein C, Heinks T, Andresen B, Berg P, Moritz S. Impaired modulation of the saccadic contingent negative variation preceding antisaccades in schizophrenia.  Biol Psychiatry. 2000;  47 (11) 978-990
  • 119 Reuter B, Herzog E, Endrass T, Kathmann N. Brain potentials indicate poor preparation for action in schizophrenia.  Psychophysiology. 2006;  43 (6) 604-611
  • 120 Fischer B, Weber H. Effects of pre-cues on voluntary and reflexive saccade generation. I. Anti-cues for pro-saccades.  Exp Brain Res. 1998;  120 (4) 403-416
  • 121 Weber H, Durr N, Fischer B. Effects of pre-cues on voluntary and reflexive saccade generation. II. Pro-cues for anti-saccades.  Exp Brain Res. 1998;  120 (4) 417-431
  • 122 Reuter B, Herzog E, Kathmann N. Antisaccade performance of schizophrenia patients: Evidence of reduced task-set activation and impaired error detection.  J Psychiatr Res. 2006;  40 (2) 122-130
  • 123 Suwa H, Matsushima E, Ohta K, Mori K. Attention disorders in schizophrenia.  Psychiatry and clinical neurosciences. 2004;  58 (3) 249-256

Dr. Benedikt Reuter

Humboldt-Universität zu Berlin, Institut für Psychologie

Rudower Chaussee 18

12489 Berlin

Email: reuter@psychologie.hu-berlin.de

    >