Minim Invasive Neurosurg 2008; 51(1): 6-10
DOI: 10.1055/s-2007-1004548
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

Microsurgically Induced Aneurysm Models in Rats, Part II: Clipping, Shrinking and Micro-Doppler Sonography

T. Mücke 1 , M. Scholz 2 , M. R. Kesting 1 , K.-D. Wolff 1 , K. Schmieder 2 , A. G. Harders 2
  • 1Department of Oral and Maxillofacial Surgery, Technische Universität München, Klinikum Rechts der Isar, Munich, Germany
  • 2Department of Neurosurgery, Ruhr University Bochum, Knappschaftskrankenhaus Bochum, Bochum, Germany
Further Information

Publication History

Publication Date:
28 February 2008 (online)

Abstract

Introduction: To adapt to the changed approach in the treatment of aneurysms, the authors have developed three different experimental aneurysm models for teaching clipping, microvascular Doppler sonography and shrinking.

Methods: 39 microaneurysms were created in 22 animals in three different locations at the carotid, femoral and iliac arteries and treated by neurosurgical clipping. Additionally, shrinking was accomplished in selected cases. Microvascular Doppler sonography with a 20-MHz microprobe was performed prior to and after clipping to assess the achieved result of the clipping manoeuvre. Multiple clip applications in different techniques were performed for optimisation of clip placement and additional training.

Results: All created aneurysms could be clipped successfully. The mean duration for clipping and control of clipping results by the micro-Doppler was 8:51±4:41 minutes at all aneurysms. The aneurysm clip was repositioned in 16 of 39 (41%) cases, on the basis of the Doppler findings in 14 aneurysms (36%). A relevant stenosis was detected in 10 (25.7%) and incomplete occlusion in 4 (10.2%) attempts. In one aneurysm vasospasm was detected at the distal part of the parent artery. Complete clipping was achieved in all cases. During the entire procedure three unexpected complications involving rupture and bleeding impeded the training.

Conclusion: Surgically induced aneurysms in rats allow the possibility of multiple clipping, shrinking and micro-Doppler sonography for the simulation of aneurysm treatment.

References

  • 1 Barker  2nd  FG, Amin-Hanjani S, Butler WE. et al . Age-dependent differences in short-term outcome after surgical or endovascular treatment of unruptured intracranial aneurysms in the United States, 1996-2000.  Neurosurgery. 2004;  54 18-28 , ; discussion 28-30
  • 2 Johnston SC, Zhao S, Dudley RA, Berman MF, Gress DR. Treatment of unruptured cerebral aneurysms in California.  Stroke. 2001;  32 597-605
  • 3 Johansson M, Norback . et al . Clinical outcome after endovascular coil embolization in elderly patients with subarachnoid hemorrhage.  Neuroradiology. 2004;  46 385-391
  • 4 Taylor CL, Yuan Z, Selman WR, Ratcheson RA, Rimm AA. Mortality rates, hospital length of stay, and the cost of treating subarachnoid hemorrhage in older patients: institutional and geographical differences.  J Neurosurg. 1997;  86 583-588
  • 5 Gnanalingham KK, Apostolopoulos V, Barazi S, O’Neill K. The impact of the international subarachnoid aneurysm trial (ISAT) on the management of aneurysmal subarachnoid haemorrhage in a neurosurgical unit in the UK.  Clin Neurol Neurosurg. 2006;  108 117-123
  • 6 Brouwers PJ. et al . Amount of blood on computed tomography as an independent predictor after aneurysm rupture.  Stroke. 1993;  24 809-814
  • 7 Vindlacheruvu R. et al . The impact of interventional neuroradiology on neurosurgical training.  Ann R Coll Surg Engl. 2003;  85 3-9
  • 8 Kallmes DF, Helm GA, Hudson SB. et al . Histologic evaluation of platinum coil embolization in an aneurysm model in rabbits.  Radiology. 1999;  213 217-222
  • 9 Gilsbach JM. Intraoperative Doppler Sonography in Neurosurgery. Wien, New York: Springer-Verlag 1983: 104
  • 10 Gilsbach JM, Hassler WE. Intraoperative Doppler and real time sonography in neurosurgery.  Neurosurg Rev. 1984;  7 199-208
  • 11 Gilsbach JM, Harders AG. Microvascular and transcranial Doppler sonographic evaluation of cerebral aneurysm flow pattern.  Neurol Res. 1989;  11 41-48
  • 12 Marchese E, Albanese A, Denaro L. et al . Intraoperative microvascular Doppler in intracranial aneurysm surgery.  Surg Neurol. 2005;  63 336-342 , ; discussion 342
  • 13 Sundt JT. Part 1: Basic considerations - Basic principles and techniques. In: Sundt Jr TM (ed), Surgical techniques for saccular and giant intracranial aneurysms. Baltimore: Williams & Williams 1990: 39-58
  • 14 Yasžargil MG. Microneurosurgery. In: microsurgical anatomy of the basal cisterns and vessels of the brain, diagnostic studies, general operative techniques and pathological considerations of the intracranial aneurysms. New York: Georg Thieme Verlag 1984 Vol 1: 5-168
  • 15 Yasžargil MG. Microneurosurgery. In: Clinical considerations, surgery of the intracranial aneurysms and results. New York: Georg Thieme Verlag 1984 Vol 2: 165-231
  • 16 Menovsky T. A human skull cast model for training of intracranial microneurosurgical skills.  Microsurgery. 2000;  20 311-313
  • 17 Aboud E. et al . New laboratory model for neurosurgical training that simulates live surgery.  J Neurosurg. 2002;  97 1367-1372
  • 18 Grober ED. et al . The educational impact of bench model fidelity on the acquisition of technical skill: the use of clinically relevant outcome measures.  Ann Surg. 2004;  240 374-381
  • 19 Abrahams JM. et al . Biodegradable polyglycolide endovascular coils promote wall thickening and drug delivery in a rat aneurysm model.  Neurosurgery. 2001;  49 1187-1193
  • 20 Alvarez F, Roda JM. Experimental model for induction of cerebral aneurysms in rats.  J Neurosurg. 1986;  65 398-400
  • 21 Fukui K, Negoro M. et al . Experimental creation of fusiform carotid artery aneurysms using vein grafts in rats.  Neurosurgery. 1998;  43 1419-1424
  • 22 Guerreiro NE, Colli BO, Carlotti  Jr  CG, Chimelli L. Experimental microaneurysms in rats: I. Model for induction.  Surg Neurol. 2004;  62 406-412
  • 23 Handa H, Hashimoto N. et al . Saccular cerebral aneurysms in rats: a newly developed animal model of the disease.  Stroke. 1983;  14 857-866
  • 24 Kirse DJ. et al . Construction of a vein-pouch aneurysm at a surgi-cally created carotid bifurcation in the rat.  Microsurgery. 1996;  17 681-689
  • 25 Krings T, Busch C, Sellhaus B. et al . Long-term histological and scanning electron microscopy results of endovascular and operative treatments of experimentally induced aneurysms in the rabbit.  Neurosurgery. 2006;  59 911-923
  • 26 Krings T, Moller . et al . A refined method for creating saccular aneurysms in the rabbit.  Neuroradiology. 2003;  45 423-429
  • 27 Nishikawa M, Yonekawa Y, Matsuda I. Experimental aneurysms.  Surg Neurol. 1976;  5 15-18
  • 28 Ohyama T, Nishide T. et al . Vascular endothelial growth factor immobilized on platinum microcoils for the treatment of intracranial aneurysms: experimental rat model study.  Neurol Med Chir (Tokyo). 2004;  44 279-285
  • 29 Quigley MR. et al . Histology and angiography in a bifurcation aneurysm model.  Surg Neurol. 1988;  30 445-451
  • 30 Stoll AW. et al . Arterial anastomoses and autogenous interposition grafts in growing rats.  Microsurgery. 1983;  4 245-249
  • 31 Toma N, Imanaka-Yoshida K, Takeuchi T. et al . Tenascin-C-coated platinum coils for acceleration of organization of cavities and reduc-tion of lumen size in a rat aneurysm model.  J Neurosurg. 2005;  103 681-686
  • 32 van Alphen HA, Gao YZ, Kamphorst W. An acute experimental model of saccular aneurysms in the rat.  Neurol Res. 1990;  12 256-259
  • 33 Young PH. et al . Experimental carotid artery aneurysms in rats: a new model for microsurgical practice.  J Microsurg. 1982;  3 135-146
  • 34 Bailes JE, Tantuwaya LS, Fukushima T, Schurman GW, Davis D. Intraoperative microvascular Doppler sonography in aneurysm surgery.  Neurosurgery. 1997;  40 965-970
  • 35 Thornton J, Bashir Q. et al . What percentage of surgically clipped intracranial aneurysms have residual necks?.  Neurosurgery. 2000;  46 1294-1298 , ; discussion 1298-1300
  • 36 Proust F, Debono B. et al . Angiographic cerebral vasospasm and delayed ischemic deficit on anterior part of the circle of Willis. Usefulness of transcranial Doppler.  Neurochirurgie. 2002;  48 489-499
  • 37 Macdonald RL, Wallace MC, Kestle JR. Role of angiography following aneurysm surgery.  J Neurosurg. 1993;  79 826-832
  • 38 Feuerberg I, Lindquist C, Lindqvist M, Steiner L. Natural history of postoperative aneurysm rests.  J Neurosurg. 1987;  66 30-34
  • 39 Kassell NF. Angiography after aneurysm surgery.  J Neurosurg. 1994;  80 953-954
  • 40 Firsching R, Synowitz HJ, Hanebeck J. Practicability of intraoperative microvascular Doppler sonography in aneurysm surgery.  Minim Invasive Neurosurg. 2000;  43 144-148
  • 41 Stendel R, Pietila . et al . Intraoperative microvascular Doppler ultrasonography in cerebral aneurysm surgery.  J Neurol Neurosurg Psychiatry. 2000;  68 29-35
  • 42 Akdemir H, Oktem IS, Tucer B. et al . Intraoperative microvascular Doppler sonography in aneurysm surgery.  Minim Invas Neurosurg. 2006;  49 312-316
  • 43 Laborde G, Gilsbach J, Harders A. The microvascular Doppler - an intraoperative tool for the treatment of large and giant aneurysms.  Acta Neurochir Suppl (Wien). 1988;  42 75-80
  • 44 Raabe A, Beck J, Gerlach R, Zimmermann M, Seifert V. Near-infrared indocyanine green video angiography: a new method for intraoperative assessment of vascular flow.  Neurosurgery. 2003;  52 132-139 , ; discussion 139
  • 45 Suzuki K, Kodama N, Sasaki T. et al . Confirmation of blood flow in perforating arteries using fluorescein cerebral angiography during aneurysm surgery.  J Neurosurg. 2007;  107 68-73
  • 46 Wrobel CJ, Meltzer H, Lamond R, Alksne JF. Intraoperative assessment of aneurysm clip placement by intravenous fluorescein angiography.  Neurosurgery. 1994;  35 970-973 , ; discussion 973
  • 47 Barrow DL, Boyer KL, Joseph GJ. Intraoperative angiography in the management of neurovascular disorders.  Neurosurgery. 1992;  30 153-159
  • 48 Martin NA, Bentson J, Vinuela F. et al . Intraoperative digital subtraction angiography and the surgical treatment of intracranial aneurysms and vascular malformations.  J Neurosurg. 1990;  73 526-533

Correspondence

Dr. T. Mücke

Department of Oral and Maxillofacial Surgery

Klinikum Rechts der Isar der Technischen Universität München

Ismaninger Str. 22

81675 München

Germany

Phone: +49/89/4140 29 21

Fax: +49/89/4140 49 93

Email: th.mucke@gmx.de

    >