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Introduction

Oxone® consists of 2KHSO5
.KHSO4

.K2SO4; its active
component is potassium peroxymonosulfate (KHSO5), a
powerful oxidizing agent in synthetic organic chemistry
which has proved to be a versatile reagent for various or-
ganic transformations. Oxone® is commercially available
and can be used immediately. Apart from its well-known
applications as oxidizing agent in some transformations
reviewed by Narsaiah,1 it has found a number of other

applications in synthetic chemistry in recent years, such as
deprotection of functional groups, functional-group trans-
formations, and cleavage of linker molecules from solid
support. It has also shown wide potential in chiral ketone-
catalysed asymmetric epoxidation of alkenes2 leading to a
variety of natural product skeletons, where its unique
regioselective properties gave excellent results for the
preparation of key intermediates.

Abstracts

(A) Oxidation of aldehydes to acids and esters:
B. Borhan and coworkers3 reported a highly efficient, mild and
simple protocol for the oxidation of aldehydes to carboxylic acids
using Oxone® as the sole oxidant. Direct conversion of aldehydes
to their corresponding esters in alcoholic solvents was also report-
ed, which was proved to be a valuable alternative to traditional
metal-mediated oxidations.

(B) Oxidation of alkyl amines to nitroxides and hydroxylamines:
Secondary amines were oxidized to the corresponding nitroxides
with Oxone® in aqueous buffered solution at 0 °C and yields of
75–93% can be obtained for different substrates.4 When Oxone® is
supported on silica or alumina, primary and secondary amines can
also be oxidized selectively to hydroxylamines in either the
presence or absence of a solvent.5

(C) Oxidation of aromatic amines to nitro- or nitrosoarenes:
Apart from oxidation to nitro compounds with Oxone® in 5–20%
aqueous acetone and buffered sodium bicarbonate,6 aromatic
amines can also be oxidized to nitrosoarenes in CH2Cl2–H2O in
good to excellent yields.7
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(D) Oxidative cleavage of 1,3-dicarbonyls and alkynes to carbox-
ylic acids:
Using Oxone® as oxidizing agent, 1,3-dicarbonyls were trans-
formed to carboxylic acids in good yield.8 Also alkynes were trans-
formed to carboxylic acids with ruthenium-catalyzed Oxone®

oxidative cleavage.9

(E) Oxidation of unactivated C–H bonds:
D. Yang and coworkers10 have reported the intramolecular oxida-
tion of unactivated C–H bonds by dioxiranes generated in situ.
This method has been applied successfully for the construction of
novel tetrahydropyran derivatives.

(F) Selective halogenation reaction:
When using NaX combined with Oxone®, selective halogenation
could be carried out effectively in some flavanones.11

(G) Deprotection of tert-butyldimethylsilyl ethers:
G. Sabitha et al.12 have reported an approach for the cleavage of
tert-butyldimethylsilyl ethers by Oxone® in 50% aqueous metha-
nol at room temperature. This method enables one to deprotect
tert-butyldimethylsilyl ethers to yield primary alcohols in the
presence of tert-butyldimethylsilyl ethers of secondary and tertiary
alcohols and phenols, which could tolerate a wide variety of other
functional groups. The silyl ethers of phenols were also deprotect-
ed after longer reaction times.

(H) Cleavage methodology for solid-phase synthesis:
E. Petricci13 et al. have developed an original and highly efficient
Oxone® cleavage methodology for the solid-phase synthesis of
substituted uracils.
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