Semin Respir Crit Care Med 2006; 27(3): 274-285
DOI: 10.1055/s-2006-945533
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Stress Hyperglycemia and Adrenal Insufficiency in the Critically Ill

Murugan Raghavan1 , Paul E. Marik2
  • 1Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
  • 2Division of Pulmonary and Critical Care Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
Further Information

Publication History

Publication Date:
21 June 2006 (online)

ABSTRACT

Critical illness evoked by trauma, extensive surgery, or severe medical illnesses is the ultimate example of acute severe physical stress. The endocrine response in a critically injured and stressed patient is varied and complex. Although the acute and chronic phases of critical illness are characterized by distinct endocrine responses, the diagnosis of these disorders is controversial. The inability to define the endocrine change as either adaptation or pathology renders the issue of treatment even more controversial. In addition, patients may have preexisting endocrine diseases, either previously diagnosed or unknown, and hence endocrine evaluation in a critically ill patient poses a major challenge to the health care provider. This review provides a novel insight into the dynamic endocrine alterations that occur during evolution of stress hyperglycemia and adrenal insufficiency in the critically ill patient and the available evidence for the therapy of these disorders.

REFERENCES

  • 1 Van den Berghe G, Wouters P, Van Weekers F et al.. Intensive insulin therapy in the critically ill patients.  N Engl J Med. 2001;  345 1359-1367
  • 2 Van den Berghe G, Schoonheydt K, Becx P, Bruyninckx F, Wouters P J. Insulin therapy protects the central and peripheral nervous system of intensive care patients.  Neurology. 2005;  64 1348-1353
  • 3 Krinsley J S. Effect of an intensive glucose management protocol on the mortality of critically ill adult patients.  Mayo Clin Proc. 2004;  79 992-1000
  • 4 Bochicchio G V, Sung J, Joshi M et al.. Persistent hyperglycemia is predictive of outcome in critically ill trauma patients.  J Trauma. 2005;  58 921-924
  • 5 Laird A M, Miller P R, Kilgo P D, Meredith J W, Chang M C. Relationship of early hyperglycemia to mortality in trauma patients.  J Trauma. 2004;  56 1058-1062
  • 6 Finney S J, Zekveld C, Elia A, Evans T W. Glucose control and mortality in critically ill patients.  JAMA. 2003;  290 2041-2047
  • 7 Pittas A G, Siegel R D, Lau J. Insulin therapy for critically ill hospitalized patients: a meta-analysis of randomized controlled trials.  Arch Intern Med. 2004;  164 2005-2011
  • 8 Krinsley J S. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients.  Mayo Clin Proc. 2003;  78 1471-1478
  • 9 Marik P E, Zaloga G P. Adrenal insufficiency in the critically ill: a new look at an old problem.  Chest. 2002;  122 1784-1796
  • 10 Annane D, Bellissant E, Bollaert P E, Briegel J, Keh D, Kupfer Y. Corticosteroids for severe sepsis and septic shock: a systematic review and meta-analysis.  BMJ. 2004;  329 489
  • 11 Annane D, Sebille V, Charpentier C et al.. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock.  JAMA. 2002;  288 862-871
  • 12 Marik P E, Raghavan M. Stress-hyperglycemia, insulin and immunomodulation in sepsis.  Intensive Care Med. 2004;  30 748-756
  • 13 Hart B B, Stanford G G, Ziegler M G, Lake C R, Chernow B. Catecholamines: study of interspecies variation.  Crit Care Med. 1989;  17 1203-1222
  • 14 Van den B G. Neuroendocrine pathobiology of chronic critical illness.  Crit Care Clin. 2002;  18 509-528
  • 15 Siegel J H, Cerra F B, Coleman B et al.. Physiological and metabolic correlations in human sepsis: invited commentary.  Surgery. 1979;  86 163-193
  • 16 Clowes Jr G H, Martin H, Walji S, Hirsch E, Gazitua R, Goodfellow R. Blood insulin responses to blood glucose levels in high output sepsis and septic shock.  Am J Surg. 1978;  135 577-583
  • 17 Mizock B A. Alterations in fuel metabolism in critical illness: hyperglycaemia.  Best Pract Res Clin Endocrinol Metab. 2001;  15 533-551
  • 18 Dahn M S, Jacobs L A, Smith S et al.. The relationship of insulin production to glucose metabolism in severe sepsis.  Arch Surg. 1985;  120 166-172
  • 19 Mehta V K, Hao W, Brooks-Worrell B M, Palmer J P. Low-dose interleukin 1 and tumor necrosis factor individually stimulate insulin release but in combination cause suppression.  Eur J Endocrinol. 1994;  130 208-214
  • 20 McCowen K C, Malhotra A, Bistrian B R. Stress-induced hyperglycemia.  Crit Care Clin. 2001;  17 107-124
  • 21 Frankenfield D C, Omert L A, Badellino M M et al.. Correlation between measured energy expenditure and clinically obtained variables in trauma and sepsis patients.  JPEN J Parenter Enteral Nutr. 1994;  18 398-403
  • 22 Norhammar A M, Ryden L, Malmberg K. Admission plasma glucose: independent risk factor for long-term prognosis after myocardial infarction even in nondiabetic patients.  Diabetes Care. 1999;  22 1827-1831
  • 23 Zindrou D, Taylor K M, Bagger J P. Admission plasma glucose: an independent risk factor in nondiabetic women after coronary artery bypass grafting.  Diabetes Care. 2001;  24 1634-1639
  • 24 Malmberg K, Norhammar A, Wedel H, Ryden L. Glycometabolic state at admission: important risk marker of mortality in conventionally treated patients with diabetes mellitus and acute myocardial infarction: long-term results from the Diabetes and Insulin-Glucose Infusion in Acute Myocardial Infarction (DIGAMI) study.  Circulation. 1999;  99 2626-2632
  • 25 Capes S E, Hunt D, Malmberg K, Pathak P, Gerstein H C. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview.  Stroke. 2001;  32 2426-2432
  • 26 Malmberg K. Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction) Study Group.  BMJ. 1997;  314 1512-1515
  • 27 Malmberg K, Ryden L, Efendic S et al.. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortality at 1 year.  J Am Coll Cardiol. 1995;  26 57-65
  • 28 Woo J, Lam C W, Kay R, Wong A H, Teoh R, Nicholls M G. The influence of hyperglycemia and diabetes mellitus on immediate and 3-month morbidity and mortality after acute stroke.  Arch Neurol. 1990;  47 1174-1177
  • 29 Garg R, Tripathy D, Dandona P. Insulin resistance as a proinflammatory state: mechanisms, mediators, and therapeutic interventions.  Curr Drug Targets. 2003;  4 487-492
  • 30 Dandona P, Aljada A, Bandyopadhyay A. The potential therapeutic role of insulin in acute myocardial infarction in patients admitted to intensive care and in those with unspecified hyperglycemia.  Diabetes Care. 2003;  26 516-519
  • 31 Hansen T K, Thiel S, Wouters P J, Christiansen J S, Van den B G. Intensive insulin therapy exerts antiinflammatory effects in critically ill patients and counteracts the adverse effect of low mannose-binding lectin levels.  J Clin Endocrinol Metab. 2003;  88 1082-1088
  • 32 Ceriello A, Bortolotti N, Motz E et al.. Meal-induced oxidative stress and low-density lipoprotein oxidation in diabetes: the possible role of hyperglycemia.  Metabolism. 1999;  48 1503-1508
  • 33 Mowlavi A, Andrews K, Milner S, Herndon D N, Heggers J P. The effects of hyperglycemia on skin graft survival in the burn patient.  Ann Plast Surg. 2000;  45 629-632
  • 34 Furnary A P, Zerr K J, Grunkemeier G L, Starr A. Continuous intravenous insulin infusion reduces the incidence of deep sternal wound infection in diabetic patients after cardiac surgical procedures.  Ann Thorac Surg. 1999;  67 352-360
  • 35 Zerr K J, Furnary A P, Grunkemeier G L, Bookin S, Kanhere V, Starr A. Glucose control lowers the risk of wound infection in diabetics after open heart operations.  Ann Thorac Surg. 1997;  63 356-361
  • 36 McManus L M, Bloodworth R C, Prihoda T J, Blodgett J L, Pinckard R N. Agonist-dependent failure of neutrophil function in diabetes correlates with extent of hyperglycemia.  J Leukoc Biol. 2001;  70 395-404
  • 37 Evans T W. Hemodynamic and metabolic therapy in critically ill patients.  N Engl J Med. 2001;  345 1417-1418
  • 38 Vanhorebeek I, De Vos R, Mesotten D, Wouters P J, Wolf-Peeters C, Van den B G. Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients.  Lancet. 2005;  365 53-59
  • 39 Dandona P, Aljada A, Mohanty P et al.. Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect?.  J Clin Endocrinol Metab. 2001;  86 3257-3265
  • 40 Langouche L, Vanhorebeek I, Vlasselaers D et al.. Intensive insulin therapy protects the endothelium of critically ill patients.  J Clin Invest. 2005;  115 2277-2286
  • 41 Whalen M J, Doughty L A, Carlos T M, Wisniewski S R, Kochanek P M, Carcillo J A. Intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 are increased in the plasma of children with sepsis-induced multiple organ failure.  Crit Care Med. 2000;  28 2600-2607
  • 42 Boldt J, Wollbruck M, Kuhn D, Linke L C, Hempelmann G. Do plasma levels of circulating soluble adhesion molecules differ between surviving and nonsurviving critically ill patients?.  Chest. 1995;  107 787-792
  • 43 Sakurai Y, Aarsland A, Herndon D N et al.. Stimulation of muscle protein synthesis by long-term insulin infusion in severely burned patients.  Ann Surg. 1995;  222 283-294
  • 44 Gore D C, Wolf S E, Sanford A P, Herndon D N, Wolfe R R. Extremity hyperinsulinemia stimulates muscle protein synthesis in severely injured patients.  Am J Physiol Endocrinol Metab. 2004;  286 E529-E534
  • 45 Woolfson A M, Heatley R V, Allison S P. Insulin to inhibit protein catabolism after injury.  N Engl J Med. 1979;  300 14-17
  • 46 Van den B G, Wouters P J, Bouillon R et al.. Outcome benefit of intensive insulin therapy in the critically ill: insulin dose versus glycemic control.  Crit Care Med. 2003;  31 359-366
  • 47 Krinsley J, Grissler B. Intensive glycemic management in critically ill patients.  Jt Comm J Qual Patient Saf. 2005;  31 308-312
  • 48 Grey N J, Perdrizet G A. Reduction of nosocomial infections in the surgical intensive-care unit by strict glycemic control.  Endocr Pract. 2004;  10(Suppl 2) 46-52
  • 49 Marik P E, Zaloga G P. Early enteral nutrition in acutely ill patients: a systematic review.  Crit Care Med. 2001;  29 2264-2270
  • 50 Marik P E, Pinsky M. Death by parenteral nutrition.  Intensive Care Med. 2003;  29 867-869
  • 51 Dickerson R N. Hypocaloric feeding of obese patients in the intensive care unit.  Curr Opin Clin Nutr Metab Care. 2005;  8 189-196
  • 52 Moore F A, Feliciano D V, Andrassy R J et al.. Early enteral feeding, compared with parenteral, reduces postoperative septic complications: the results of a meta-analysis.  Ann Surg. 1992;  216 172-183
  • 53 Jenkins D J, Ghafari H, Wolever T M et al.. Relationship between rate of digestion of foods and post-prandial glycaemia.  Diabetologia. 1982;  22 450-455
  • 54 Marik P E, Zaloga G P. Gastric versus post-pyloric feeding: a systematic review.  Crit Care. 2003;  7 R46-R51
  • 55 Krishnan J A, Parce P B, Martinez A, Diette G B, Brower R G. Caloric intake in medical ICU patients: consistency of care with guidelines and relationship to clinical outcomes.  Chest. 2003;  124 297-305
  • 56 Marik P E, Zaloga G P. Adrenal insufficiency during septic shock.  Crit Care Med. 2003;  31 141-145
  • 57 Cooper M S, Stewart P M. Corticosteroid insufficiency in acutely ill patients.  N Engl J Med. 2003;  348 727-734
  • 58 Annane D, Sebille V, Troche G, Raphael J C, Gajdos P, Bellissant E. A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin.  JAMA. 2000;  283 1038-1045
  • 59 Marik P E, Kiminyo K, Zaloga G P. Adrenal insufficiency in critically ill patients with human immunodeficiency virus.  Crit Care Med. 2002;  30 1267-1273
  • 60 Harry R, Auzinger G, Wendon J. The clinical importance of adrenal insufficiency in acute hepatic dysfunction.  Hepatology. 2002;  36 395-402
  • 61 Dimopoulou I, Tsagarakis S, Anthi A et al.. High prevalence of decreased cortisol reserve in brain-dead potential organ donors.  Crit Care Med. 2003;  31 1113-1117
  • 62 Kilger E, Weis F, Briegel J et al.. Stress doses of hydrocortisone reduce severe systemic inflammatory response syndrome and improve early outcome in a risk group of patients after cardiac surgery.  Crit Care Med. 2003;  31 1068-1074
  • 63 Marik P E, Zaloga G P. The central nervous system hypothalamic-pituitary-adrenal axis in sepsis.  Crit Care Med. 2002;  30 490-491
  • 64 Raghavan M, Marik P E. Management of sepsis during the early “golden hours”.  J Emerg Med. 2006;  , In press
  • 65 Beishuizen A, Thijs L G, Vermes I. Patterns of corticosteroid-binding globulin and the free cortisol index during septic shock and multitrauma.  Intensive Care Med. 2001;  27 1584-1591
  • 66 Zaloga G P. Sepsis-induced adrenal deficiency syndrome.  Crit Care Med. 2001;  29 688-690
  • 67 Schroeder S, Wichers M, Klingmuller D et al.. The hypothalamic-pituitary-adrenal axis of patients with severe sepsis: altered response to corticotropin-releasing hormone.  Crit Care Med. 2001;  29 310-316
  • 68 Norbiato G, Bevilacqua M, Vago T et al.. Cortisol resistance in acquired immunodeficiency syndrome.  J Clin Endocrinol Metab. 1992;  74 608-613
  • 69 Ali M, Allen H R, Vedeckis W V, Lang C H. Depletion of rat liver glucocorticoid receptor hormone-binding and its mRNA in sepsis.  Life Sci. 1991;  48 603-611
  • 70 Molijn G J, Koper J W, van Uffelen C J et al.. Temperature-induced down-regulation of the glucocorticoid receptor in peripheral blood mononuclear leucocyte in patients with sepsis or septic shock.  Clin Endocrinol (Oxf). 1995;  43 197-203
  • 71 Melby J C, Spink W W. Comparative studies on adrenal cortical function and cortisol metabolism in healthy adults and in patients with shock due to infection.  J Clin Invest. 1958;  37 1791-1798
  • 72 Marik P E, Gayowski T, Starzl T E. The hepatoadrenal syndrome: a common yet unrecognized clinical condition.  Crit Care Med. 2005;  33 1254-1259
  • 73 Singh N, Gayowski T, Marino I R, Schlichtig R. Acute adrenal insufficiency in critically ill liver transplant recipients. Implications for diagnosis.  Transplantation. 1995;  59 1744-1745
  • 74 Marik P E. Adrenal insufficiency: the link between low apolipoprotein A-1 levels and poor outcome in the critically ill?.  Crit Care Med. 2004;  32 1977-1978
  • 75 Yaguchi H, Tsutsumi K, Shimono K, Omura M, Sasano H, Nishikawa T. Involvement of high density lipoprotein as substrate cholesterol for steroidogenesis by bovine adrenal fasciculo-reticularis cells.  Life Sci. 1998;  62 1387-1395
  • 76 Borkowski A J, Levin S, Delcroix C, Mahler A, Verhas V. Blood cholesterol and hydrocortisone production in man: quantitative aspects of the utilization of circulating cholesterol by the adrenals at rest and under adrenocorticotropin stimulation.  J Clin Invest. 1967;  46 797-811
  • 77 Liu J, Heikkila P, Meng Q H, Kahri A I, Tikkanen M J, Voutilainen R. Expression of low and high density lipoprotein receptor genes in human adrenals.  Eur J Endocrinol. 2000;  142 677-682
  • 78 Calvo D, Gomez-Coronado D, Lasuncion M A, Vega M A. CLA-1 is an 85-kD plasma membrane glycoprotein that acts as a high-affinity receptor for both native (HDL, LDL, and VLDL) and modified (OxLDL and AcLDL) lipoproteins.  Arterioscler Thromb Vasc Biol. 1997;  17 2341-2349
  • 79 van der Voort P H, Gerritsen R T, Bakker A J, Boerma E C, Kuiper M A, de Heide L. HDL-cholesterol level and cortisol response to synacthen in critically ill patients.  Intensive Care Med. 2003;  29 2199-2203
  • 80 Chenaud C, Merlani P G, Roux-Lombard P et al.. Low apolipoprotein A-1 level at intensive care unit admission and systemic inflammatory response syndrome exacerbation.  Crit Care Med. 2004;  32 632-637
  • 81 Mookerjee R P, Sen S, Davies N A, Hodges S J, Williams R, Jalan R. Tumour necrosis factor alpha is an important mediator of portal and systemic haemodynamic derangements in alcoholic hepatitis.  Gut. 2003;  52 1182-1187
  • 82 Yokoyama I, Gavaler J S, Todo S, Miyata T, Van Thiel D H, Starzl T E. Endotoxemia is associated with renal dysfunction in liver transplantation recipients during the first postoperative week.  Hepatogastroenterology. 1995;  42 205-208
  • 83 Rasaratnam B, Kaye D, Jennings G, Dudley F, Chin-Dusting J. The effect of selective intestinal decontamination on the hyperdynamic circulatory state in cirrhosis: a randomized trial.  Ann Intern Med. 2003;  139 186-193
  • 84 Vishnyakova T G, Bocharov A V, Baranova I N et al.. Binding and internalization of lipopolysaccharide by CLA-1, a human orthologue of rodent scavenger receptor B1.  J Biol Chem. 2003;  278 22771-22780
  • 85 Baranova I, Vishnyakova T, Bocharov A et al.. Lipopolysaccharide down regulates both scavenger receptor B1 and ATP binding cassette transporter A1 in RAW cells.  Infect Immun. 2002;  70 2995-3003
  • 86 Ettinger W H, Varma V K, Sorci-Thomas M et al.. Cytokines decrease apolipoprotein accumulation in medium from Hep G2 cells.  Arterioscler Thromb. 1994;  14 8-13
  • 87 Soni A, Pepper G M, Wyrwinski P M et al.. Adrenal insufficiency occurring during septic shock: incidence, outcome, and relationship to peripheral cytokine levels.  Am J Med. 1995;  98 266-271
  • 88 Marik P, Zaloga G. Prognostic value of cortisol response in septic shock.  JAMA. 2000;  284 308-309
  • 89 Marik P E. Unraveling the mystery of adrenal failure in the critically ill.  Crit Care Med. 2004;  32 596-597
  • 90 Hamrahian A H, Oseni T S, Arafah B M. Measurements of serum free cortisol in critically ill patients.  N Engl J Med. 2004;  350 1629-1638
  • 91 Sun X, Fischer D R, Pritts T A, Wray C J, Hasselgren P O. Expression and binding activity of the glucocorticoid receptor are upregulated in septic muscle.  Am J Physiol Regul Integr Comp Physiol. 2002;  282 R509-R518
  • 92 Liu D H, Su Y P, Zhang W et al.. Changes in glucocorticoid and mineralocorticoid receptors of liver and kidney cytosols after pathologic stress and its regulation in rats.  Crit Care Med. 2002;  30 623-627
  • 93 Dimopoulou I, Tsagarakis S, Kouyialis A T et al.. Hypothalamic-pituitary-adrenal axis dysfunction in critically ill patients with traumatic brain injury: incidence, pathophysiology, and relationship to vasopressor dependence and peripheral interleukin-6 levels.  Crit Care Med. 2004;  32 404-408
  • 94 Schenarts C L, Burton J H, Riker R R. Adrenocortical dysfunction following etomidate induction in emergency department patients.  Acad Emerg Med. 2001;  8 1-7
  • 95 Drucker D, Shandling M. Variable adrenocortical function in acute medical illness.  Crit Care Med. 1985;  13 477-479
  • 96 Keh D, Boehnke T, Weber-Cartens S et al.. Immunologic and hemodynamic effects of “low-dose” hydrocortisone in septic shock: a double-blind, randomized, placebo-controlled, crossover study.  Am J Respir Crit Care Med. 2003;  167 512-520
  • 97 Dellinger R P, Carlet J M, Masur H et al.. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock.  Crit Care Med. 2004;  32 858-873
  • 98 Briegel J, Forst H, Haller M et al.. Stress doses of hydrocortisone reverse hyperdynamic septic shock: a prospective, randomized, double-blind, single-center study.  Crit Care Med. 1999;  27 723-732
  • 99 Mayenknecht J, Diederich S, Bahr V, Plockinger U, Oelkers W. Comparison of low and high dose corticotropin stimulation tests in patients with pituitary disease.  J Clin Endocrinol Metab. 1998;  83 1558-1562

Paul E MarikM.D. 

Division of Pulmonary and Critical Care Medicine, Thomas Jefferson University

834 Walnut St., Ste. 650, Philadelphia, PA 19107

Email: paul.marik@jefferson.edu

    >