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Introduction

Lithium hydroxide is a mild and efficient reagent used in
several transformations in organic synthesis. It is used in
tandem intramolecular aldol–aldol and sequential in-
tramolecular Michael–aldol1 reactions, as promoter of
fragmentation reactions of optically active carbolactones
providing g-hydroxycyclohexenones and g-butenolides,2

in the synthesis of tropolones useful as bidentate ligands,3

as promoter of glucosilation of 1-hydroxyindoles,4 in the
stereoselective Michael addition of thiols to N-meth-
acryloylcamphorsultam followed by hydrolysis of the
sulfonamides,5 and it is applied in the deacylation of
diazo-oxazolidones.6,7 In addition, lithium hydroxide has
been widely employed in Horner–Wadsworth–Emmons
(HWE) reactions for preparation of a,b-unsaturated es-
ters, a-unsaturated esters8,9 and a,b-unsaturated nitriles.10

Abstracts

(A) Mischne reported a synthesis of [4.4.0] or [5.3.0] bicyclic
frameworks achieved via sequential intramolecular Michael–aldol
and tandem intramolecular aldol–aldol strategies, starting from
acyclic precursors derived from b-ionone.1

(B) Khim et al. reported that lithium hydroxide induced fragmen-
tation in butenolides and g-hydroxycyclohexenones. The addition
of LiOH (2.0 equiv) to a solution of the carbolactone in THF–H2O
(5:1) at room temperature resulted in a mixture of the butenolides
and g-hydroxycyclohexenones in excellent yield.2

(C) Lemal and co-workers showed that anhydrous lithium hydrox-
ide in benzene transforms tropone into pentafluorotropolone,
which functions as a bidentate ligand (72% yield).3
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(D) Yamada et al. reported a lithium hydroxide promoted gluco-
sidation of 1-hydroxyindoles with 2,3,4,6-tetra-O-acetyl-a-D-glu-
copyranosyl bromide followed by acetylation with Ac2O and
pyridine.4

(E) Tsai et al. showed that lithium base (LiOH) promotes stereo-
selective Michael addition of thiols to N-methacryloylcamphor-
sultam and produced the corresponding addition products with a
diastereomeric ratio of 66–90%. Hydrolysis of the Michael product
with three equivalents of lithium hydroxide in THF–H2O gave the
corresponding optically active b-thioester without racemization,
and camphorsultam was recovered quantitatively.5

(F) Lithium hydroxide promotes selective deacylation of diazo-
oxazolidones resulting in N-diazoacetyl derivatives.6,7

(G) Lattanzi et al. showed a mild and practical procedure of LiOH-
promoted HWE olefination, in which aldehydes were reacted with
a-cyano phosphonates, yielding a,b-unsaturated nitriles. The
reaction conditions are tolerated by functionalized ketones and the
exclusive formation of (E)-g-hydroxy a,b-unsaturated nitriles was
observed.10

(H) Karagiozov and Abbott reported a stereoselective synthesis of
a,b-unsaturated esters achieved via HWE reaction of b,b-disub-
stituted a,b-unsaturated aldehydes. Thus, aldehydes undergo ole-
fination with phosphonate carbanion generated from triethyl
phosphonoacetate and lithium hydroxide to give (E)-a,b-unsaturat-
ed esters in excellent selectivity.9
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