Synlett 2006(8): 1240-1244  
DOI: 10.1055/s-2006-932472
LETTER
© Georg Thieme Verlag Stuttgart · New York

Diastereoselective Tandem Michael Additions of Indoles to 3-Nitrocoumarin Derivatives and Methyl Vinyl Ketone

Meng-Chun Yea, Yao-Yu Yangb, Yong Tang*a, Xiu-Li Suna, Zhi Maa, Wei-Min Qinb
a State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. of China
b College of Chemistry and Chemical Engineering, Donghua University, 1882 West Yan’an Road, Shanghai 200051, P. R. of China
Fax: +86(21)54925078; e-Mail: tangy@mail.sioc.ac.cn;
Further Information

Publication History

Received 9 November 2005
Publication Date:
10 March 2006 (online)

Abstract

Tandem Michael additions of indole derivatives to 3-nitrocoumarins 2, followed by MVK, in one pot, has been developed for the synthesis of multi-functionalized 3,4-dihydrocoumarins bearing a quaternary stereocenter. The reaction proceeds with high diastereoselectivities in good to excellent yields.

    References and Notes

  • For reviews on the one-pot reaction, see:
  • 1a Ramón DJ. Yus M. Angew. Chem. Int. Ed.  2005,  44:  1602 
  • 1b Lee JM. Na Y. Han H. Chang S. Chem. Soc. Rev.  2004,  33:  302 
  • For selected recent work on one-pot sequential processes, see:
  • 1c Tosaki S.-Y. Tsuji R. Ohshima T. Shibasaki M. J. Am. Chem. Soc.  2005,  127:  2147 
  • 1d Deng L. Giessert AJ. Gerlitz OO. Dai X. Diver ST. Davies HML. J. Am. Chem. Soc.  2005,  127:  1342 
  • 1e Kabalka GW. Venkataiah B. Dong G. Tetrahedron Lett.  2005,  46:  4209 
  • 1f Milton MD. Inada Y. Nishibayashi Y. Uemura S. Chem. Commun.  2004,  23:  2712 
  • 2a Zhou J. Tang Y. J. Am. Chem. Soc.  2002,  124:  9030 
  • 2b Zhou J. Ye M.-C. Huang Z.-Z. Tang Y. J. Org. Chem.  2004,  69:  1309 
  • 2c Zhou J. Ye M.-C. Tang Y. J. Comb. Chem.  2004,  6:  301 
  • 2d Zhou J. Tang Y. Chem. Commun.  2004,  432 
  • 2e Zhou J. Tang Y. Org. Biomol. Chem.  2004,  2:  429 
  • 2f Huang Z.-Z. Kang Y.-B. Zhou J. Ye M.-C. Org. Lett.  2004,  6:  1677 
  • 2g Ye M.-C. Zhou J. Huang Z.-Z. Tang Y. Chem. Commun.  2003,  2554 
  • 2h Zhou J. Tang Y. Chem. Soc. Rev.  2005,  34:  664 
  • Indole is a key subunit in numerous natural products and medicinal agents, see:
  • 3a Palomo C. Oiarbide M. Kardak BG. García JM. Linden A. J. Am. Chem. Soc.  2005,  127:  4154 ; and references therein
  • 3b Evans DA. Scheidt KA. Fandrick KR. Lam HW. Wu J. J. Am. Chem. Soc.  2003,  125:  10780 
  • 4 Unpublished results
  • Also called chroman-2-ones, for recent examples of multi-functionalized chromanones, see:
  • 5a Janecki T. Wsek T. Tetrahedron  2004,  60:  1049 
  • 5b Plietker B. Niggemann M. Pollrich A. Org. Biomol. Chem.  2004,  2:  1116 
  • 5c Raev LD. Frey W. Ivanov IC. Synlett  2004,  1584 
  • 5d Posakony J. Hirao M. Stevens S. Simon JA. Bedalov A. J. Med. Chem.  2004,  47:  2635 
  • 5e Amantini D. Fringuelli F. Piermatti O. Pizzo F. Vaccaro L. J. Org. Chem.  2003,  68:  9263 
  • 5f Saaby S. Nakama K. Lie MA. Hazell RG. Jørgensen KA. Chem. Eur. J.  2003,  9:  6145 
  • For reviews, see:
  • 6a Schvekhgeimer MGA. Russ. Chem. Rev.  1998,  67:  35 
  • 6b Rosini G. Ballini R. Synthesis  1988,  833 
  • 6c Seebach D. Colvin EW. Lehr F. Weller T. Chimia  1979,  33:  1 
  • 6d Schipchandler MT. Synthesis  1979,  666 
  • Carbon nucleophiles:
  • 6e Fornicola RS. Montgomery J. Tetrahedron Lett.  1999,  40:  8337 
  • 6f Fornicola RS. Oblinger E. Montgomery J. J. Org. Chem.  1998,  63:  3528 
  • 6g Cox ED. Diaz-Arauzo H. Huang Q. Reddy MS. Ma C. Harris B. McKernan R. Skolnick P. Cook JM. J. Med. Chem.  1998,  41:  2537 
  • 6h Rodríguez R. Dielz A. Rubiralta M. Giralt E. Heterocycles  1996,  43:  513 
  • 6i Rodios NA. Bojilova A. Terzis A. Raptopoulou CP. J. Heterocycl. Chem.  1994,  31:  1129 
  • 6j Somei M. Tokutake S. Kaneko C. Chem. Pharm. Bull.  1983,  31:  2153 
  • 6k Dornow A. Menzel H. Justus Liebigs Ann. Chem.  1954,  588:  40 
  • Nitrogen nucleophiles:
  • 6l Brimble MA. Rowan DD. J. Chem. Soc., Perkin Trans. 1  1990,  311 
  • 6m Shin C. Yonezawa Y. Katayama K. Yoshimura J. Bull. Chem. Soc. Jpn.  1973,  46:  1727 
  • Oxygen nucleophiles:
  • 6n Hull HM. Knight DW. J. Chem. Soc., Perkin Trans. 1  1997,  857 
  • 6o Moodie RB. Schofield K. Taylor PG. Baillie PJ. J. Chem. Soc., Perkin Trans. 2  1981,  842 
  • 6p Yamamura K. Watarai S. Kinugasa T. Bull. Chem. Soc. Jpn.  1971,  44:  2440 
  • Sulfide nucleophiles:
  • 6q Bernasconi CF. Ketner RJ. Ragains ML. Chen X. Rappoport Z. J. Am. Chem. Soc.  2001,  123:  2155 
  • 6r Rosenberg M. BalᲠ. turdík E. Kuchár A. Collect. Czech. Chem. Commun.  1987,  52:  425 
  • 6s BalᲠ. turdík E. Drobnica L. Collect. Czech. Chem. Commun.  1982,  47:  1659 
  • 7 Versleijen JPG. van Leusen AM. Feringa BL. Tetrahedron Lett.  1999,  40:  5803 
  • 8a Srikanth GSC. Castle SL. Org. Lett.  2004,  6:  449 
  • 8b He L. Srikanth GSC. Castle SL. J. Org. Chem.  2005,  70:  8140 
  • 9 Bartoli G. Bosco M. Giuli S. Giuliani A. Lucarelli L. Marcantoni E. Sambri L. Torregiani E. J. Org. Chem.  2005,  70:  1941 
10

Typical Procedure: To a stirred solution of Mg(OTf)2 (0.01 mmol) and 3-nitrocoumarin 2 (0.50 mmol) in i-PrOH (3 mL) at 20 °C in air was added indole derivative 1 (0.51 mmol). After the reaction was complete (ca. 3-12 h, monitored by TLC), MVK (124 µL, 1.50 mmol) and Ph3P (26.2 mg, 0.10 mmol) were added in turn, then DME (3 mL) was added in ca. five minutes. The resulting mixture was stirred for the required time (TLC), concentrated, and purified by flash chromatography on silica gel (PE-EtOAc, 2:1) to give the product 4.
Selected spectral data:
4a: IR (neat): 3418, 1773, 1710, 1554, 1458, 1356, 1226, 1169, 747 cm-1. 1H NMR (300 MHz, CDCl3): δ = 8.43 (br s, 1 H), 7.40-7.33 (m, 3 H), 7.25-7.20 (m, 2 H), 7.14-7.07 (m, 4 H), 4.98 (s, 1 H), 2.86-2.73 (m, 2 H), 2.66-2.44 (m, 2 H), 2.09 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 205.75, 161.25, 149.76, 135.81, 129.64, 128.56, 126.70, 125.60, 124.70, 122.83, 122.60, 120.41, 117.88, 116.78, 111.72, 107.69, 92.98, 43.96, 38.12, 29.87, 28.42. LRMS-EI: m/z (%) = 378 (M+), 274 (100). Anal. Calcd for C21H18N2O5: C, 66.66; H, 4.79; N, 7.40. Found: C, 66.67; H, 4.84; N, 7.40.
4b: IR (neat): 3052, 2926, 1774, 1718, 1554, 1487, 1456, 1338, 1226, 1166, 742 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.38-7.32 (m, 3 H), 7.28-7.20 (m, 2 H), 7.13-7.07 (m, 3 H), 6.97 (s, 1 H), 4.97 (s, 1 H), 3.78 (s, 3 H), 2.80-2.71 (m, 2 H), 2.60-2.44 (m, 2 H), 2.08 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 205.62, 161.22, 149.75, 136.66, 129.56, 128.99, 128.52, 127.41, 125.54, 122.90, 122.37, 120.00, 117.89, 116.75, 109.78, 105.91, 93.04, 43.81, 38.11, 33.07, 29.83, 28.40. LRMS-ESI: m/z = 393 (M + H+). HRMS: m/z calcd for C22H20N2O5Na (M + Na+): 415.1270; found: 415.1267.
4c: IR (neat): 3418, 1770, 1716, 1587, 1556, 1509, 1455, 1360, 1264, 1237, 1169, 1091, 735 cm-1. 1H NMR (300 MHz, DMSO-d 6): δ = 11.27 (s, 1 H), 7.41-7.30 (m, 3 H), 7.05-6.94 (m, 3 H), 6.73-6.61 (m, 2 H), 5.44 (s, 1 H), 3.52 (s, 3 H), 3.00-2.49 (m, 4 H), 2.05 (s, 3 H). 13C NMR (75 MHz, DMSO-d 6): δ = 206.94, 161.87, 150.40, 137.42, 136.24, 130.01, 129.87, 125.64, 121.95, 121.13, 119.26, 119.20, 116.90, 111.76, 103.26, 92.88, 44.23, 38.33, 30.34, 28.41, 12.27. LRMS-ESI: m/z = 393 (M + H+). HRMS: m/z calcd for C22H20N2O5Na (M + Na+): 415.1270; found: 415.1265.
4d: IR (neat): 3421, 1767, 1716, 1554, 1509, 1361, 1264, 1092, 736 cm-1. 1H NMR (300 MHz, CDCl3): δ = 8.50 (br s, 1 H), 7.34-7.30 (m, 1 H), 7.20-7.05 (m, 4 H), 6.98 (d, J = 8.4 Hz, 1 H), 6.87 (d, J = 1.8 Hz, 1 H), 6.53 (d, J = 8.1 Hz, 1 H), 5.86 (br s, 1 H), 3.88 (br s, 3 H), 2.94-2.48 (m, 4 H), 2.08 (s, 3 H). 13C NMR (75 MHz, acetone-d 6): δ = 205.15, 161.57, 154.03, 149.97, 137.47, 128.96, 128.48, 125.23, 124.71, 123.42, 122.72, 117.42, 116.20, 107.21, 105.25, 99.92, 94.32, 54.42, 42.54, 37.47, 28.85, 27.69. LRMS-ESI: m/z = 409 (M + H+). HRMS: m/z calcd for C22H20N2O5Na (M + Na+): 431.1219; found: 431.1217.
Spectral data for compound 3: 1H NMR (300 MHz, CDCl3): δ = 8.27 (br s, 1 H), 7.46-7.04 (m, 9 H), 5.84 (d, J = 9.3 Hz, 1 H), 5.40 (d, J = 9.3 Hz, 1 H).