Am J Perinatol 2006; 23(3): 153-158
DOI: 10.1055/s-2006-931914
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Profile of Serum S100β Levels during Maturation in Fetal and Neonatal Sheep

Andrew J. Parry1 , D. Michael McMullan1 , Susan Yelich1 , Frank L. Hanley1
  • 1Department of Pediatric Cardiac Surgery, University of California, San Francisco, California
Further Information

Publication History

Publication Date:
22 February 2006 (online)

ABSTRACT

Serum levels of the protein S-100β are dependent on three factors: rate of production, permeability of the blood-brain barrier, and rate of clearance. In the developing fetus and neonate all of these factors change at different rates. This study was performed to determine how serum S-100 levels varied during fetal and early postnatal life. Blood samples were obtained from 41 fetal and neonatal lambs. The blood was separated in a centrifuge and the serum drawn off and assayed for S-100β using a commercially available radioimunoassay kit. S-100β did not appear in the blood until halfway through pregnancy. Thereafter, levels steadily increased until 1 month after birth. Following this, S-100β levels decreased progressively until by 1 year of age, they had reached a plateau. S-100β levels change significantly with normal fetal and neonatal maturation. Valid interpretation of other data from subjects of similar developmental stage must take into consideration this physiological variation.

REFERENCES

  • 1 Gazzolo D, Vinesi P, Marinoni E et al.. S100B protein concentrations in cord blood: correlations with gestational age in term and preterm deliveries.  Clin Chem. 2000;  46 998-1000
  • 2 Distefano G, Curreri R, Betta P, Isaja M T, Romeo M G, Amato M. Serial protein S-100 serum levels in preterm babies with perinatal asphyxia and periventricular white matter lesions.  Am J Perinatol. 2002;  19 317-322
  • 3 Dwyer R, Fee J P, Moore J. Uptake of halothane and isoflurane by mother and baby during caesarean section.  Br J Anaesth. 1995;  74 379-383
  • 4 Rosen M A. Anesthesia for fetal procedures and surgery.  Yonsei Med J. 2001;  42 669-680
  • 5 Ikai A, Reimer R K, Ramamoorthy C et al.. Preliminary results of fetal cardiac bypass in nonhuman primates.  J Thorac Cardiovasc Surg. 2005;  129 175-181
  • 6 Westaby S, Johnsson P, Parry A J et al.. Serum S100 protein: a potential marker for cerebral events during cardiac surgery.  Ann Thorac Surg. 1996;  61 88-92
  • 7 Hidaka H, Endo T, Kawamoto S et al.. Purification and characterization of adipose tissue S-100b protein.  J Biol Chem. 1983;  258 2705-2709
  • 8 Stefansson K, Wollmann R L, Moore B W, Arnason B G. S-100 protein in human chondrocytes.  Nature. 1982;  295 63-64
  • 9 Haimoto H, Hosoda S, Kato K. Differential distribution of immunoreactive S100-a and S100-b proteins in normal nonnervous human tissues.  Lab Invest. 1987;  57 489-498
  • 10 Becker T, Gerke V, Kube E, Weber K. S100P, a novel Ca(2+)-binding protein from human placenta: cDNA cloning, recombinant protein expression and Ca2+ binding properties.  Eur J Biochem. 1992;  207 541-547
  • 11 Widdowson E M, Dickerson J W. Composition of the body. In: Lentner C Geigy Scientific Tables. Vol. 1. Units of Measurement, Body Fluids, Composition of the Body, and nutrition. Basel, Switzerland; CIBA-GEIGY 1981: 217
  • 12 Hyden H, Ronnback L. S100 on isolated neurons and glial cells from rat, rabbit and guinea pig during early postnatal development.  Neurobiology. 1975;  5 291-302
  • 13 Ghandour M S, Labourdette G, Vincendon G, Gombos G. A biochemical and immunohistological study of S100 protein in developing rat cerebellum.  Dev Neurosci. 1981;  4 98-109
  • 14 Zimmer D B, van Eldik L J. Secretion of S-100 from rat C6 glioma cells.  Brain Res. 1987;  436 367-370
  • 15 Kligman D, Marshak D R. Isolation and characterization of a neurite extension factor from bovine brain.  Proc Natl Acad Sci U S A. 1985;  82 7136-7139
  • 16 Ronnback L. Appearance and accumulation of the brain specific S100 protein in the developing nervous systems of rat, rabbit and guinea pig.  Cytobios. 1976;  16 219-226
  • 17 Patterson D SP, Sweasey D, Hebert C N. Changes occurring in the chemical composition of the central nervous system during foetal and post-natal development of the sheep.  J Neurochem. 1971;  18 2027-2040
  • 18 Dobbing J. The later development of the brain and its vulnerability. In: Davis JA, Dobbing J Scientific Foundations of Paediatrics. London; Heinemann Medical 1974: 565-577
  • 19 Adinolfi M, Haddad S A. Levels of plasma proteins in human and rat fetal CSF and the development of the blood-CSF barrier.  Neuropediatrics. 1977;  8 345-353
  • 20 Dziegielewska K M, Knott G W, Saunders N R. The nature and composition of the internal environment of the developing brain.  Cell Mol Neurobiol. 2000;  20 41-56
  • 21 Dziegielewska K M, Habgood M D, Mollgard K, Stagaard M, Saunders N R. Species-specific transfer of plasma albumin from blood into different cerebrospinal fluid compartments in the fetal sheep.  J Physiol. 1991;  439 215-237
  • 22 Mollgard K, Balslev Y, Lauritzen B, Saunders N R. Cell junctions and membrane specializations in the ventricular zone (germinal matrix) of the developing sheep brain: a CSF-brain barrier.  J Neurocytol. 1987;  16 433-444
  • 23 Marshak D R. S100b as a neurotropic factor.  Prog Brain Res. 1990;  86 169-181
  • 24 Hu J, Van Eldik L J. S100 beta induces apoptotic cell death in cultured astrocytes via a nitric oxide-dependent pathway.  Biochim Biophys Acta. 1996;  1313 239-245
  • 25 Kligman D. Isolation of a protein from bovine brain which promotes neurite extension from chick embryo cerebral cotex neurones in defined medium.  Brain Res. 1982;  250 93-100
  • 26 Kligman D, Marshak D R. Isolation and characterisation of a neurite extension factor from bovine brain.  Proc Natl Acad Sci U S A. 1985;  82 7136-7139
  • 27 Yang Q, Hamberger A, Wang S, Haglid K G. Appearance of neuronal S-100β during development of the rat brain.  Dev Brain Res. 1996;  91 181-189
  • 28 Zuckerman J E, Herschman H R, Levine L. Appearance of a brain specific antigen (the S-100 protein) during human fietal development.  J Neurochem. 1970;  17 247-251
  • 29 Tiu S C, Chan W Y, Heizmann C W, Schafer B W, Shu S Y, Yew D T. Differential expression of S100B and S100A6 in the human fetal and aged cerebral cortex.  Dev Brain Res. 2000;  119 159-168
  • 30 Ueda S, Saitoh Y, Koibuchi N, Ishizuya-Oka A. Local disturbance of neuronal migration in the S-100beta-retarded mutant mouse.  Cell Tissue Res. 1997;  289 547-551
  • 31 Makino E, Sakaguchi M, Iwatsuki K, Huh N H. Introduction of an N-terminal peptide of S100C/A11 into human cells induces apoptotic cell death.  J Mol Med. 2004;  82 612-620
  • 32 Yui S, Nakatani Y, Mikami M. Calprotectin (S100A8/S100A9), an inflammatory protein complex from neutrophils with a broad apoptosis-inducing activity.  Biol Pharmacol Bull. 2003;  26 753-760

Andrew J ParryM.A. B.M. 

Department of Pediatric Cardiac Surgery, Bristol Royal Hospital for Children

Upper Maudlin Street, Bristol BS2 8BJ, United Kingdom

    >