Synlett 2006(3): 0450-0454  
DOI: 10.1055/s-2006-926260
LETTER
© Georg Thieme Verlag Stuttgart · New York

Convenient Synthesis of Isocyanate and Isothiocyanate-Substituted Boron Dipyrromethene Dyes and Derivatives

Laure Bonardi, Gilles Ulrich, Raymond Ziessel*
Laboratoire de Chimie Moléculaire, École de Chimie, Polymères, Matériaux (ECPM), Université Louis Pasteur (ULP), 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
Fax: +33(3)90242635; e-Mail: ziessel@chimie.u-strasbg.fr;
Further Information

Publication History

Received 18 November 2005
Publication Date:
06 February 2006 (online)

Abstract

Starting from nitro-substituted phenyl rings, the preparation of boron dipyrromethene dyes carrying amino functions was achieved in good yields. Conversion of the p-aminophenyl group to the corresponding isocyanate and isothiocyanate is feasible under mild conditions. Various combinations allow the production of luminescent molecules bearing mono- or disubstituted urea or thiourea substituents. When two adjacent amino functions are present, a simple protocol allows the production of pyridine-indole and dipyridophenazine derivatives. The on/off switching of the fluorescence from the nitro to the amino and further to the urea renders these dyes attractive as fluorescent probes.

    References and Notes

  • 1 Baeyer A. Ber. Dtsch. Chem. Ges.  1871,  4:  555 
  • 2 Desverne J.-P. Czarnik AW. In Chemosensors of Ion and Molecular Recognition   NATO Advanced Study Institute Series C492, Kluwer; Dordrecht: 1997. 
  • 3 Valeur B. In Molecular Fluorescence: Principles and Applications   Wiley-VCH; Weiheim: 2002. 
  • 4 Haugland RP. In Handbook of Molecular Probes and Research Products   9th ed.:  Molecular Probes, Inc.; Eugene OR: 2002. 
  • 5a Tsien RY. In Fluorescent and Photochemical Probes of Dynamic Biochemical Signals Inside Living Cells   Czarnik AW. American Chemical Society; Washington DC: 1993.  p.130-146  
  • 5b Minta A. Kao JPY. Tsien RY. J. Biol. Chem.  1989,  264:  8171 
  • 5c Zalewski PD. Forbes IJ. Betts WH. Biochem. J.  1993,  296:  403 
  • 6 Gareis T. Huber C. Wolfbeis OS. Daub J. Chem. Commun.  1997,  1717 
  • 7 Lakowicz JR. In Topics in Fluorescence Spectroscopy   Vol. 1-4:  Plenum Press; New York: 1994. 
  • 8a Kollmannsberger M. Rurack K. Resch-Genger U. Daub J. J. Phys. Chem. A  1998,  102:  10211 
  • 8b Rurack K. Kollmannsberger M. Resch-Genger U. Daub J. J. Am. Chem. Soc.  2000,  122:  968 
  • 8c Moon SY. Cha NR. Kim YH. Chang S.-K. J. Org. Chem.  2004,  69:  181 
  • 8d Turfan B. Akkaya EU. Org. Lett.  2002,  4:  2857 
  • 8e Czarnik AW. In Fluorescent Chemosensors for Ion and Molecule Recognition   ACS Symposium Series 538, American Chemical Society; Washington DC: 1993. 
  • 9 Lockhart JC. Chemical Sensors in Comprehensive Supramolecular Chemistry   Vol 1:  Lehn J.-M. Pergamon; New York: 1996. 
  • 10 Gabe Y. Urano Y. Kikuchi K. Kojima H. Nagano T. J. Am. Chem. Soc.  2004,  126:  3357 
  • 11a De Silva AP. Gunaratne HQN. Gunnlaugsson T. McCoy CP. Maxwell PRS. Rademacher JT. Rice TE. Pure Appl. Chem.  1996,  68:  1443 
  • 11b De Silva AP. Gunaratne HQN. Gunnlaugsson T. Huxley AJM. McCoy CP. Rademacher JT. Rice TE. Chem. Rev.  1997,  97:  1515 
  • 12 Wan C.-W. Burghart A. Chen J. Bergström F. Johanson LB.-A. Wolford MF. Kim TG. Topp MR. Hochstrasser RM. Burgess K. Chem. Eur. J.  2003,  9:  4430 
  • 13a Goze C. Ulrich G. Charbonnière L. Ziessel R. Chem. Eur. J.  2003,  9:  3748 
  • 13b Ulrich G. Ziessel R. Synlett  2004,  439 
  • 13c Ulrich G. Ziessel R. J. Org. Chem.  2004,  69:  2070 
  • 13d Ulrich G. Ziessel R. Tetrahedron Lett.  2004,  45:  1949 
  • 14a Boyer JH. Haag AM. Sathyamoorthi G. Soong M.-L. Thangaraj K. Heteroat. Chem.  1993,  4:  39 
  • 14b Burghart A. Kim H. Wech MB. Thorensen LH. Reibenspies J. Burgess K. J. Org. Chem.  1999,  64:  7813 
  • 15a Azov VA. Diederich F. Lill Y. Hecht B. Helv. Chim. Acta  2003,  86:  2149 
  • 15b Li M. Wang H. Zhang X. Zhang H.-S. Spectrochim. Acta, Part A  2004,  60:  987 
  • 16 Selected data for 7: isolated yield quantitative. 1H NMR (CDCl3): δ = 7.23 (m, 4 H), 2.53 (s, 6 H), 2.30 (q, 4 H, 3 J = 7.5 Hz), 1.31 (s, 6 H), 0.98 (t, 6 H, 3 J = 7.5 Hz) ppm. 13C NMR (CDCl3): δ = 154.3, 138.9, 138.2, 134.3, 133.6, 133.2, 130.9, 130.0, 129.7, 125.6, 17.2, 14.7, 12.7, 12.0 ppm.
  • 20a Piguet C. Bünzli J.-CG. Bernardinelli G. Hopfgartner G. Williams AF. J. Am. Chem. Soc.  1993,  115:  8197 
  • 20b Shavaleev NM. Bell ZR. Easun TL. Rutkaite R. Swanson L. Ward MD. J. Chem. Soc., Dalton Trans.  2004,  3678 
  • 21a Barigelletti F. Juris A. Balzani V. Belser P. von Zelewsky A. Inorg. Chem.  1987,  26:  4115 
  • 21b Jenkins Y. Friedman AE. Turro NJ. Barton JK. Biochemistry  1992,  31:  10809 
  • 21c Holmlin RE. Barton JK. Inorg. Chem.  1995,  34:  7 
17

Selected data for 8: isolated yield quantitative. 1H NMR (CDCl3): δ = 7.32 (m, 4 H), 2.53 (s, 6 H), 2.30 (q, 4 H, 3 J = 7.5 Hz), 1.30 (s, 6 H), 0.98 (t, 6 H, 3 J = 7.5 Hz) ppm. 13C NMR (CDCl3): δ = 154.5, 138.4, 138.1, 137.2, 135.1, 133.3, 132.3, 130.7, 130.1, 126.5, 17.2, 14.7, 12.7, 12.1 ppm.

18

Selected data for 12: 99%. 1H NMR (CDCl3): δ = 7.51 (d, 2 H, 3 J = 8.5 Hz), 7.39-7.32 (m, 4 H), 7.18-7.15 (m, 3 H), 7.00 (br s, 1 H), 6.84 (br s, 1 H), 2.53 (s, 6 H), 2.28 (q, 4 H, 3 J = 7.5 Hz), 1.33 (s, 6 H), 0.96 (t, 6 H, 3 J = 7.5 Hz) ppm. 13C NMR (CDCl3): δ = 153.8, 153.0, 140.1, 139.2, 138.6, 137.9, 133.0, 131.2, 130.6, 129.6, 129.2, 124.8, 121.6, 119.9, 17.2, 14.7, 12.7, 12.1 ppm. 11B NMR (CDCl3): δ = 3.93 (t, 1 J = 32 Hz) ppm. FAB+-MS: m/z (nature of peak, rel. intensity) = 515.2 (100) [M + H]+. Anal. Calcd for C30H33BF2N4O·H2O: C, 67.67; H, 6.63; N, 10.52. Found: C, 67.52; H, 6.52; N, 10.32.

19

Selected data for 13: 60%. 1H NMR (CDCl3): δ = 7.94 (br s, 1 H), 7.81 (br s, 1 H), 7.58 (dd, 2 H, 1 J = 1.7 Hz, 3 J = 6.6 Hz), 7.51-7.45 (m, 2 H), 7.39-7.32 (m, 3 H), 7.30-7.28 (dd, 2 H, 1 J = 1.7 Hz, 3 J = 6.6 Hz), 2.52 (s, 6 H), 2.29 (q, 4 H, 3 J = 7.5 Hz), 1.32 (s, 6 H), 0.97 (t, 6 H, 3 J = 7.5 Hz) ppm. 13C NMR (CDCl3): δ = 180.0, 154.1, 139.1, 138.5, 138.3, 136.5, 134.0, 133.1, 130.9, 130.3, 129.4, 127.8, 124.4, 125.1, 17.2, 14.7, 12.7, 12.1 ppm. 11B NMR (CDCl3): δ = 3.85 (t, 1 J = 32 Hz) ppm. FAB+-MS: m/z (nature of peak, rel. intensity) = 531.1 (100) [M + H]+. Anal. Calcd for C30H33BF2N4S·H2O: C, 65.69; H, 6.43; N, 10.21. Found: C, 65.49; H, 6.28; N, 9.93.