References and Notes
For general reviews on asymmetric synthesis of α-amino acids via homologation of chiral
equivalents of nucleophilic glycine, see:
<A NAME="RS10805ST-1A">1a</A>
Williams RM. In
Synthesis of Optically Active α-Amino Acids
Baldwin JE.
Organic Chemistry Series, Pergamon Press;
Oxford:
1989.
<A NAME="RS10805ST-1B">1b</A>
Duthaler RO.
Tetrahedron
1994,
50:
1539
<A NAME="RS10805ST-1C">1c</A>
Cativiela C.
Diaz-De-Villegas MD.
Tetrahedron: Asymmetry
1998,
9:
3517
<A NAME="RS10805ST-1D">1d</A>
Cativiela C.
Diaz-De-Villegas MD.
Tetrahedron: Asymmetry
2000,
11:
645
For selected recent reviews, see:
<A NAME="RS10805ST-1E">1e</A>
Calmes M.
Daunis J.
Amino Acids
1999,
16:
215
<A NAME="RS10805ST-1F">1f</A>
Bouifraden S.
Drouot C.
El Hadrami M.
Guenoun F.
Lecointe L.
Mai N.
Paris M.
Pothion C.
Sadoune M.
Sauvagnat B.
Amblard M.
Aubagnac JL.
Calmes M.
Chevallet P.
Daunis J.
Enjalbal C.
Fehrentz JA.
Lamaty F.
Lavergne JP.
Lazaro R.
Rolland V.
Roumestant ML.
Viallefont P.
Vidal Y.
Martinez J.
Amino Acids
1999,
16:
345
<A NAME="RS10805ST-1G">1g</A>
Sutherland A.
Willis CL.
Nat. Prod. Rep.
2000,
17:
621
<A NAME="RS10805ST-1H">1h</A>
Beller M.
Eckert M.
Angew. Chem. Int. Ed.
2000,
39:
1010
<A NAME="RS10805ST-1I">1i</A>
Kawabata T.
Fuji K.
Synth. Org. Chem. Jpn.
2000,
58:
1095
<A NAME="RS10805ST-1J">1j</A>
Kazmaier U.
Maier S.
Zumpe FL.
Synlett
2000,
1523
<A NAME="RS10805ST-1K">1k</A>
Yao SL.
Saaby S.
Hazell RG.
Jorgensen KA.
Chem. Eur. J.
2000,
6:
2435
<A NAME="RS10805ST-1L">1l</A>
Abellan T.
Chinchilla R.
Galindo N.
Guillena G.
Najera C.
Sansano JM.
Eur. J. Org. Chem.
2000,
2689
<A NAME="RS10805ST-1M">1m</A>
Rutjes FPJT.
Wolf LB.
Schoemaker HE.
J. Chem. Soc., Perkin Trans. 1
2000,
4197
<A NAME="RS10805ST-1N">1n</A>
Shioiri T.
Hamada Y.
Synlett
2001,
184
<A NAME="RS10805ST-1O">1o</A>
Soloshonok VA.
Curr. Org. Chem.
2002,
6:
341
<A NAME="RS10805ST-2">2</A> For the recent collection of leading papers on asymmetric synthesis of amino
acids, see: ‘Asymmetric Synthesis of Novel Sterically Constrained Amino Acids’, Tetrahedron
Symposia-in-Print; # 88; Guest Editors: Hruby, V. J. and Soloshonok, V. A.; Tetrahedron
2001,
57 (30):
‘Operationally Convenient Conditions’ is a significant issue in the development of
contemporary organic synthetic methodology.
<A NAME="RS10805ST-3A">3a</A>
Taylor SM.
Yamada T.
Ueki H.
Soloshonok VA.
Tetrahedron Lett.
2004,
45:
9159
<A NAME="RS10805ST-3B">3b</A>
Soloshonok VA.
Berbasov DO.
J. Fluorine Chem.
2004,
125:
1757
<A NAME="RS10805ST-4A">4a</A>
Soloshonok VA.
Ueki H.
Ellis TK.
Tetrahedron Lett.
2005,
46:
941
<A NAME="RS10805ST-4B">4b</A>
Soloshonok VA.
Ueki H.
Ellis TK.
Yamada T.
Ohfune Y.
Tetrahedron Lett.
2005,
46:
1107
For recent general reviews on combinatorial chemistry, see:
<A NAME="RS10805ST-5A">5a</A>
Young SS.
Ge N.
Curr. Opin. Drug Discovery Dev.
2004,
7:
318
<A NAME="RS10805ST-5B">5b</A>
Maltais R.
Tremblay MR.
Ciobanu LC.
Poirier D.
J. Comb. Chem.
2004,
6:
443
<A NAME="RS10805ST-5C">5c</A>
Burke MD.
Schreiber SL.
Angew. Chem. Int. Ed.
2004,
43:
46
<A NAME="RS10805ST-5D">5d</A>
Maclean D.
Martin EJ.
J. Comb. Chem.
2004,
6:
1
<A NAME="RS10805ST-6A">6a</A>
Trost BM.
Acc. Chem. Res.
2002,
35:
695
<A NAME="RS10805ST-6B">6b</A>
Trost BM.
Angew. Chem., Int. Ed. Engl.
1995,
34:
259
<A NAME="RS10805ST-6C">6c</A>
Trost BM.
Science
1991,
254:
1471
<A NAME="RS10805ST-7">7</A>
Hornback JM.
Organic Chemistry
Brooks/Cole Publishing Company;
New York:
1998.
p.361-364
<A NAME="RS10805ST-8">8</A> For recent applications of Hünig’s base for the efficient synthesis of tertiary
amines, see:
Moore JL.
Taylor SM.
Soloshonok VA.
ARKIVOC
2005,
(vi):
287
<A NAME="RS10805ST-9A">9a</A> Although Professor Hegedus does mention that the complexation of a secondary
amino group to Ni(II) was not sufficient to create the desired chemoselectivity of
O-H over N-H acylation, he does introduce the idea of using it as a form of protection.
See:
Hegedus LS.
Greenberg MM.
Wendling JJ.
Bullock JP.
J. Org. Chem.
2003,
68:
4179
<A NAME="RS10805ST-9B">9b</A>
Patinec V.
Gardinier I.
Yaouanc JJ.
Clement J.-C.
Handel H.
des Abbayes H.
Inorg. Chim. Acta
1996,
244:
105
For previous papers from this groups related to the synthesis of stereochemically
defined C-substituted glutamic acids and their derivatives, see:
<A NAME="RS10805ST-10A">10a</A>
Soloshonok VA.
Avilov DV.
Kukhar’ VP.
Meervelt LV.
Mischenko N.
Tetrahedron Lett.
1997,
38:
4903
<A NAME="RS10805ST-10B">10b</A>
Soloshonok VA.
Cai C.
Hruby VJ.
Meervelt LV.
Mischenko N.
Tetrahedron
1999,
55:
12031
<A NAME="RS10805ST-10C">10c</A>
Soloshonok VA.
Cai C.
Hruby VJ.
Meervelt LV.
Tetrahedron
1999,
55:
12045
<A NAME="RS10805ST-10D">10d</A>
Soloshonok VA.
Cai C.
Hruby VJ.
Tetrahedron: Asymmetry
1999,
10:
4265
<A NAME="RS10805ST-10E">10e</A>
Soloshonok VA.
Cai C.
Hruby VJ.
Tetrahedron Lett.
2000,
41:
135
<A NAME="RS10805ST-10F">10f</A>
Soloshonok VA.
Cai C.
Hruby VJ.
Angew. Chem. Int. Ed.
2000,
39:
2172
<A NAME="RS10805ST-10G">10g</A>
Soloshonok VA.
Cai C.
Hruby VJ.
Org. Lett.
2000,
2:
747
<A NAME="RS10805ST-10H">10h</A>
Soloshonok VA.
Cai C.
Hruby VJ.
Meervelt LV.
Yamazaki T.
J. Org. Chem.
2000,
20:
6688
<A NAME="RS10805ST-10I">10i</A>
Soloshonok VA.
Cai C.
Hruby VJ.
Tetrahedron Lett.
2000,
41:
9645
<A NAME="RS10805ST-10J">10j</A>
Cai C.
Soloshonok VA.
Hruby VJ.
J. Org Chem.
2001,
66:
1339
<A NAME="RS10805ST-10K">10k</A>
Soloshonok VA.
Ueki H.
Jiang C.
Cai C.
Hruby VJ.
Helv. Chim. Acta
2002,
85:
3616
<A NAME="RS10805ST-10L">10l</A>
Soloshonok VA.
Ueki H.
Tiwari R.
Cai C.
Hruby VJ.
J. Org. Chem.
2004,
69:
4984
<A NAME="RS10805ST-10M">10m</A>
Cai C.
Yamada T.
Tiwari R.
Hruby VJ.
Soloshonok VA.
Tetrahedron Lett.
2004,
45:
6855
<A NAME="RS10805ST-10N">10n</A>
Soloshonok VA.
Cai C.
Yamada T.
Ueki H.
Ohfune Y.
Hruby VJ.
J. Am. Chem. Soc.
2005,
127:
15296
<A NAME="RS10805ST-11">11</A>
Synthesis of the Ni(II) Complexes of Glycine Schiff Bases with N
-(2-Benzoylphenyl)-2-(alkylamino)acetamides 9a-c; General Procedure.
A solution of KOH (10 equiv) in MeOH (7 mL/1 g of KOH) was added to a suspension of
N-(2-benzoylphenyl)-2-(alkylamino)acetamides 8a-c (1 equiv), glycine (5 equiv), nickel nitrate hexahydrate (2 equiv) in MeOH (10 mL/1
g of 8a-c) at 60-70 °C. Upon complete consumption of the N-(2-benzoylphenyl)-2-(alkylamino)acetamides 8a-c, monitored by TLC, the reaction mixture was poured over slurry of ice and 5% AcOH.
After the complete precipitation, product 9a-c was filtered and dried in a low temperature oven (50 °C) overnight. The product was
obtained in high chemical yield (99%) and high chemical purity without further purification.
Compound 9a: mp >300 °C (decomp.). 1H NMR (299.95 MHz, CDCl3): δ = 1.95 (1 H, br s), 3.45 (2 H, s), 3.86 (2 H, s), 7.01 (1 H, td, J = 7.65, 0.72 Hz), 7.13-7.29 (3 H, m), 7.30-7.60 (7 H, m), 7.62-7.78 (2 H, m), 8.64
(1 H, dd, J = 8.4, 0.3 Hz), 11.66 (1 H, br s). 13C NMR (75.42 MHz, CDCl3): δ = 52.90, 54.10, 121.68, 122.32, 124.82, 125.55, 125.71, 127.30, 127.40, 128.32,
128.45, 128.48, 130.17, 132.62, 132.82, 133.66, 138.47, 139.12, 139.26, 171.19, 198.32.
HRMS: m/z calcd for C22H20N2NaO2: 367.1417; found: 367.1103.
Compound 9b: mp 292.3 °C (decomp.). 1H NMR (299.95 MHz, CDCl3): δ = 1.56 (3 H, d, J = 6.3 Hz), 1.66 (3 H, d, J = 6.3 Hz), 2.76 (1 H, br s), 3.12 (1 H, dq, J = 13.2, 6.3 Hz), 3.29 (1 H, d, J = 17.7 Hz), 3.75 (2 H, s), 3.99 (1 H, dd, J = 17.7, 7.5 Hz), 6.83 (1 H, m), 6.93 (1 H, m), 7.01 (1 H, m), 7.19 (1 H, m), 7.35
(1 H, m), 7.53-7.59 (3 H, m), 8.55 (1 H, d, J = 7.8 Hz). 13C NMR (75.42 MHz, CDCl3): δ = 20.57, 21.74, 51.70, 53.33, 60.60, 121.28, 128.34, 125.69, 125.82, 136.24,
129.45, 129.75, 129.88, 132.66, 133.60, 134.66, 142.62, 173.23, 177.88, 177.91, 178.18.
HRMS: m/z calcd for C20H21N3NaNiO3: 432.0828; found: 432.0837.
Compound 9c: mp >300 °C (decomp.). 1H NMR (299.95 MHz, CDCl3): δ = 1.54 (9 H, s), 2.60 (1 H, d, J = 7.8 Hz), 3.41 (1 H, d, J = 17.1 Hz), 3.73 (2 H, d, J = 3.9 Hz), 4.17 (1 H, dd, J = 17.1, 7.5 Hz), 6.84 (1 H, m), 6.93 (1 H, dd, J = 8.1, 1.8 Hz), 6.99 (1 H, m), 7.23 (1 H, m), 7.38 (1 H, m), 7.53-7.60 (3 H, m),
8.37 (1 H, d, J = 7.5 Hz). 13C NMR (75.42 MHz, CDCl3): δ = 28.02, 50.98, 58.25, 60.42, 121.33, 124.24, 125.71, 126.27, 129.41, 129.79,
129.90, 132.72, 133.50, 134.54, 142.38, 171.74, 177.36, 177.72. HRMS: m/z calcd for C21H23N3NaNiO3: 446.0985; found: 446.1015.
The Michael Addition of the Oxazolidinone Derived Amides of Cinnamic Acid and Nucleophilic
Glycine Equivalents 9a-c; General Procedure.
To a flask containing 9a, 9b, or 9c (0.10 g), 3-[(E)-3-alkyl-acryloyl]oxazolidin-2-one 20a,b (1.05 equiv) and 3 mL of DMF, DBU (15 mol%) was added to the reaction mixture, which
was stirred at r.t. and monitored by TLC. After disappearance of starting glycine
equivalent by TLC, the reaction mixture was poured into a beaker containing 100 mL
ice water. After the ice had melted the corresponding product 21a,b, 22, 23, was filtered from the aqueous solution and dried in an oven to afford the corresponding
product in high chemical yields.
Compound 23: mp 146.3 °C. 1H NMR (299.95 MHz, CDCl3): δ = 2.66-2.89 (4 H, m), 3.25-3.42 (3 H, m), 3.85 (1 H, dd, J = 16.2, 6.0 Hz), 4.18 (1 H, dd, J = 8.7, 3.9 Hz), 4.43 (1 H, d, J = 4.2 Hz), 4.60 (1 H, t, J = 8.7 Hz), 5.18 (1 H, dd, J = 8.7, 3.9 Hz), 6.71-6.84 (3 H, m), 6.97-7.01 (2 H, m), 7.05 (1 H, d, J = 6.9 Hz), 7.11-7.14 (2 H, m), 7.23-7.47 (10 H, m), 7.56-7.59 (2 H, m), 7.67-7.73
(3 H, m), 8.38 (1 H, d, J = 8.7 Hz). 13C NMR (75.42 MHz, CDCl3): δ = 36.44, 45.18, 53.08, 54.69, 57.47, 69.75, 73.38, 121.04, 123.85, 125.72, 125.86,
126.88, 126.96, 127.24, 127.97, 128.28, 128.37, 128.74, 128.89, 129.14, 129.62, 129.79,
130.72, 132.57, 133.53, 133.61, 133.98, 138.72, 132.84, 139.24, 142.93, 169.89, 171.02,
175.94, 176.60, 177.47. HRMS: m/z calcd for C42H36N4NaNiO6: 773.1880; found: 773.1813.
Compound 22: mp 183.1 °C. 1H NMR (299.95 MHz, CDCl3): δ = 1.29 (3 H, d, J = 6.6 Hz), 1.37 (3 H, d, J = 6.6 Hz), 2.67 (1 H, s), 2.74 (1 H, h, J = 6.6 Hz), 2.86 (1 H, d, J = 16.5 Hz), 3.18-3.30 (2 H, m), 3.56 (1 H, dd, J = 18.6, 8.7 Hz), 3.72 (1 H, dd, J = 18.6, 8.7 Hz), 4.20 (1 H, dd, J = 8.7, 3.9 Hz), 4.49 (1 H, d, J = 4.5 Hz), 4.63 (1 H, t, J = 9.0 Hz), 5.18 (1 H, dd, J = 8.7, 3.9Hz), 6.74 (1 H, d, J = 2.7 Hz), 6.99-7.05 (3 H, m), 7.24 (1 h, d, J = 2.7 Hz), 7.27 (1 H, d, J = 2.7 Hz), 7.28-7.33 (5 H, m), 7.37 (1 H, t, J = 7.2 Hz), 7.47-7.52 (3 H, m), 7.56-7.62 (3 H, m), 8.40 (1 H, d, J = 9.3 Hz). 13C NMR (75.42 MHz, CDCl3): δ = 20.22, 21.44, 29.30, 44.95, 52.75, 53.78, 57.47, 69.77, 73.29, 124.67, 125.66,
125.91, 127.27, 127.95, 128.31, 128.42, 128.49, 128.75, 128.88, 129.33, 129.42, 130.32,
130.80, 132.57, 132.70, 132.86, 138.82, 139.21, 141.57, 153.35, 169.80, 169.98, 176.94,
177.08. HRMS: m/z calcd for C38H36N4NaNiO6: 759.1501; found: 759.1584.
Compound 21b: mp 183.1 °C. 1H NMR (299.95 MHz, CDCl3): δ = 1.28 (9 H, s), 2.67 (1 H, s), 2.97 (1 H, d, J = 16.8 Hz), 3.20-3.37 (2 H, m), 3.51 (1 H, dd, J = 17.7, 8.4 Hz), 3.74 (1 H, dd, J = 17.7, 8.4 Hz), 4.17 (1 H, dd, J = 9, 3.9 Hz), 4.46 (1 H, d, J = 4.5 Hz), 4.61 (1 H, t, J = 8.7 Hz), 5.18 (1 H, dd, J = 8.7, 3.6 Hz), 6.79 (1 H, m), 6.98-7.03 (3 H, m), 7.26-7.38 (7 H, m), 7.43-7.49
(3 H, m), 7.54-7.63 (4 H, m), 8.23 (1 H, d, J = 8.4 Hz). 13C NMR (75.42 MHz, CDCl3): δ = 27.78, 36.55, 44.93, 50.81, 57.45, 59.70, 69.72, 72.53, 120.89, 123.10, 125.81,
127.34, 127.63, 128.24, 128.32, 128.82, 128.87, 129.03, 129.18, 129.97, 130.62, 132.88,
133.62, 133.94, 138.83, 139.11, 142.79, 153.29, 169.99, 170.83, 176.36, 177.20. HRMS:
m/z calcd for C39H39N4NiO6: 739.2037; found: 739.2078.
Compound 21a: mp 153.7 °C. 1H NMR (299.95 MHz, CDCl3): δ = 1.43 (9 H, s), 1.91 (3 H, s), 3.04 (1 H, dd, J = 18.3, 7.2 Hz), 3.24 (1 H, dd, J = 18.3, 7.2 Hz), 3.39 (1 H, d, J = 17.1 Hz), 4.16 (1 H, d, J = 4.5 Hz), 4.22 (1 H, dd, J = 9.0, 3.6 Hz), 4.39 (1 H, q, J = 17.1, 7.2 Hz), 4.61 (1 H, t, J = 8.7 Hz), 5.28 (1 H, dd, J = 8.7, 3.3 Hz), 6.78 (2 H, d, J = 4.8 Hz), 6.94 (1 H, d, J = 7.8 Hz), 7.25 (2 H, m), 7.30-7.47 (7 H, m), 7.53 (1 H, t, J = 7.8 Hz), 8.37 (1 H, d, J = 8.4 Hz). 13C NMR (75.42 MHz, CDCl3): δ = 16.85, 27.97, 33.75, 38.94, 51.51, 57.50, 57.89, 69.93, 72.32, 120.98, 123.04,
126.09, 127.33, 127.81, 128.59, 128.83, 129.03, 129.09, 129.85, 132.88, 133.68, 134.00,
139.23, 142.73, 153.55, 170.46, 171.24, 177.12, 177.78. HRMS: m/z calcd for C34H36N4NiO6: 677.1880; found: 677.1918.
For the general procedure for the disassembly of the Ni(II) Schiff base complexes
see:
<A NAME="RS10805ST-12A">12a</A>
Soloshonok VA.
Ueki H.
Ellis TK.
Yamada T.
Ohfune Y.
Tetrahedron Lett.
2005,
46:
1107
<A NAME="RS10805ST-12B">12b</A>
Ellis TK.
Ueki H.
Soloshonok VA.
Tetrahedron Lett.
2005,
46:
941