Plant Biol (Stuttg) 2007; 9(1): 77-84
DOI: 10.1055/s-2006-924488
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Subcellular Effects of Drought Stress in Rosmarinus officinalis

E. Olmos1 , M. J. Sánchez-Blanco2 , T. Ferrández2 , J. J. Alarcón2
  • 1Departamento de Nutrición, CEBAS-CSIC, P.O. Box 164, 30100 Espinardo-Murcia, Spain
  • 2Departamento de Riegos, CEBAS-CSIC, P.O. Box 164, 30100 Espinardo-Murcia, Spain
Further Information

Publication History

Received: March 16, 2006

Accepted: July 11, 2006

Publication Date:
28 September 2006 (online)

Abstract

The use of Rosmarinus officinalis, and other wild plant species, in the Mediterranean area is an interesting solution in order to avoid the desertification and rapid soil erosion, because of their good resistance to environmental conditions. Previous articles have described experiments designed to determine the impact of water stress at the plant level in this species, but more knowledge is required at the subcellular and ultrastructural levels. An anatomic and ultrastructural study of the leaves was conducted on Rosmarinus officinalis plants growing under different water treatments. In the leaves of water-stressed plants, the leaf water potential and turgor decreased, and leaf osmotic potential became more negative with respect to control plants. The anatomic investigations showed that both the mesophyll intercellular spaces and the epidermal cell size were reduced significantly under the more intense drought stress conditions. At the subcellular level, chloroplasts accumulated plastoglobuli and lipid bodies, and cuticle thickness was increased under water stress. In our experiment, the anatomic and ultrastructural modifications of Rosmarinus officinalis could be considered an additional adaptation to drought stress together with physiological and biochemical modifications as antioxidant accumulation.

References

  • 1 Bottega S., Corsi G.. Structure, secretion and possible functions of calyx glandular hairs of Rosmarinus officinalis L. (Labiatae).  Botanical Journal of the Linnean Society. (2000);  132 325-335
  • 2 Chaves M. M., Pereira J. S.. Water stress, CO2 and climate change.  Journal of Experimental Botany. (1992);  43 1131-1139
  • 3 De Herralde F., Biel C., Savé R., Morales M. A., Torrecillas A., Alarcón J. J., Sánchez-Blanco M. J.. Effect of water and salt stresses on the growth, gas exchange and water relations in Argyranthemum coronopifolium plants.  Plant Science. (1998);  139 9-17
  • 4 Eymery F., Rey P.. Inmunocytolocalization of CDSP 32 and CSDP 34, two chloroplastic drought-induced stress proteins in Solanum tuberosum plants.  Plant Physiology and Biochemistry. (1999);  37 305-312
  • 5 Foyer C. H., Lelandais M., Kunert K. J.. Photooxidative stress in plants.  Physiologia Plantarum. (1994);  92 696-717
  • 6 Franco J. A., Bañon S., Fernandez J. A., Leskovar D. I.. Effect of nursery regimes and establishment on root development of Lotus creticus seedlings following transplanting.  Journal of Horticultural Science and Biotechnology. (2000);  76 174-179
  • 7 Gucci R., Xiloyannis C., Flore J. A.. Gas exchange parameters, water relations and carbohydrate partitioning in leaves of field-grown Prunus domestica following fruit removal.  Physiologia Plantarum. (1991);  83 497-505
  • 8 Hernández J. A., Olmos E., Corpas F. J., Sevilla F., del Rio L. A.. Salt-induced oxidative stress in chloroplasts of pea plants.  Plant Science. (1995);  105 151-167
  • 9 Hernández J. A., Rubio M., Olmos E., Ros-Barceló A., Martínez-Gómez P.. Oxidative stress induced by long-term plum pox virus infection in peach (Prunus persica).  Physiologia Plantarum. (2004);  122 486-495
  • 10 Holopainen T., Anttonen S., Wulff A., Palomäki V., Kärenlampi L.. Comparative evaluation of the effects of gaseous pollutants, acidic deposition, and mineral deficiencies: structural changes in the cells of forest plants.  Agriculture, Ecosystems and Environment. (1992);  42 365-398
  • 11 Inada N., Sakai A., Kuroiwa H., Kuroiwa T.. Three-dimensional analysis of the senescence program in rice (Oryza sativa L.) coleoptiles - investigations by fluorescence microscopy and electron microscopy.  Planta. (1998);  206 585-597
  • 12 Kivimäenpää M., Sutinen S., Medin E. L., Karlsson P. E., Selldén G.. Diurnal changes in microscopic structures of mesophyll cells of Norway spruce, Picea abies (L.) Karst., and the effects of ozone and drought.  Annals of Botany. (2001);  88 119-130
  • 13 Kyparissis A., Petropoulou Y., Manetas Y.. Summer survival of leaves in a soft-leaved shrub (Phlomis fruticosa L., Labiatae) under Mediterranean field conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents.  Journal of Experimental Botany. (1995);  46 1825-1831
  • 14 Losel D. M.. Lipid-metabolism of leaves of Poa pratensis during infection by Puccinia poarum.  New Phytologist. (1978);  80 167-174
  • 15 Mäkelä P., Kärkkäinen J., Somersalo S.. Effects of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, RuBPCO activities in tomato grown under drought or salinity.  Biologia Plantarum. (2000);  43 471-475
  • 16 Morales M. A., Olmos E., Torrecillas A., Sánchez-Blanco M. J., Alarcón J. J.. Differences in water relations, leaf ion accumulation and excretion rates between cultivated and wild species of Limonium sp. grown in conditions of saline stress.  Flora. (2001);  196 345-352
  • 17 Munné-Bosch S., Alegre L.. Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants.  Planta. (2000);  210 925-931
  • 18 Munné-Bosch S., Alegre L.. Die and let live: leaf senescence contributes to plant survival under drought stress.  Functional Plant Biology. (2004);  31 203-216
  • 19 Munné-Bosch S., Jubany-Mari T., Alegre L.. Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts.  Plant, Cell and Environment. (2001);  24 1319-1327
  • 20 Munné-Bosch S., Schwarz K., Alegre L.. Enhanced formation of α-tocopherol and highly oxidized abietane diterpenes in water-stressed rosemary plants.  Plant Physiology. (1999);  121 1047-1052
  • 21 Naveh Z.. Landscape ecology, management and conservation of European and Levant Mediterranean uplands. Tenhunen, J. D., ed. Plant Response to Stress. Functional Analysis in Mediterranean Ecosystems, Vol. 15. New York, Berlin, Heidelberg; NATO ASI Series Ecological Sciences, Springer Verlag (1987): 641-647
  • 22 Nordby H. E., Yelenosky G.. Effects of cold hardening on acyl lipids of citrus tissue.  Phytochemistry. (1984);  23 41-45
  • 23 Nordby H. E., Yelenosky G.. Change in citrus leaf lipids during freeze-thaw stress.  Phytochemistry. (1985);  24 1675-1679
  • 24 Oertli J. J., Lips S. H., Agami M.. The strength of sclerophyllous cells to resist collapse due to negative turgor pressure.  Acta Oecologica. (1990);  11 281-289
  • 25 Oksanen E., Sober J., Karnosky D. F.. Impacts of elevated CO2 and/or O3 on leaf ultrastructure of aspen (Populus tremuloides) and birch (Betula papyrifera) in the Aspen FACE experiment.  Environmental Pollution. (2001);  115 437-446
  • 26 Olmos E., Hellin E.. Ultrastructural differences of hyperhydric and normal leaves from regenerated carnation plants.  Scientia Horticulturae. (1998);  75 91-101
  • 27 Pääkkönen E., Vahala J., Pohjola M., Holopainen T., Kärenlampi L.. Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth.) are modified by water stress.  Plant, Cell and Environment. (1998);  21 671-684
  • 28 Rangel B., Platt K. A., Thomson W. W.. Ultrastructural aspects of the cytoplasmic origin and accumulation of oil in olive fruit (Olea europaea).  Physiologia Plantarum. (1997);  101 109-114
  • 29 Reynolds E. S.. The use of lead citrate at high pH as an electron opaque stain in electron microscopy.  Journal of Cell Biology. (1963);  17 208-212
  • 30 Ristic Z., Cass D. D.. Chloroplast structure after water shortage and high temperature in two lines of Zea mays L. that differ in drought resistance.  Botanical Gazette. (1991);  152 186-194
  • 31 Sakaki T., Saito K., Kawaguchi A., Kondo N., Yamada M.. Conversion of monogalactosyldiacylglycerols to triacylglycerols in ozone-fumigated spinach leaves.  Plant Physiology. (1990);  94 766-772
  • 32 Sánchez-Blanco M. J., Ferrández T., Navarro A., Bañon S., Alarcón J. J.. Effects of irrigation on water relations, growth and survival of Rosmarinus officinalis plants during and after transplanting.  Journal of Plant Physiology. (2004 a);  161 1133-1142
  • 33 Sánchez-Blanco M. J., Ferrández F., Morales M. A., Morte A., Alarcón J. J.. Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions.  Journal of Plant Physiology. (2004 b);  161 675-682
  • 34 Sánchez-Blanco M. J., Morales M. A., Torrecillas A., Alarcón J. J.. Diurnal and seasonal osmotic potential changes in Lotus creticus creticus plants grown under saline stress.  Plant Science. (1998);  136 1-10
  • 35 Savé R., Alegre L., Pery M., Terradas J.. Ecophysiology after fire resprouts of Arbutus unedo L.  Orsis. (1993);  8 107-119
  • 36 Scholander P. F., Hammel H. T., Bradstreet E. D., Hemingsen E. A.. Sap pressure in vascular plants.  Science. (1965);  148 339-346
  • 37 Spurr A. R.. A low-viscosity epoxy resin embedding medium for electron microscopy.  Journal of Ultrastructure Research. (1969);  26 31-43
  • 38 Steinmüller D., Tevini N.. Composition and function of plastoglobuli. 1. Isolation and purification from chloroplasts and chromoplasts.  Planta. (1985);  163 201-207
  • 39 Syvertsen J. P., Lloyd J., McConchie C., Kriedemann P. E., Farquhar G. D.. On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves.  Plant, Cell and Environment. (1995);  18 149-157
  • 40 Turner N. C.. Measurement of plant water status by the pressure chamber technique.  Irrigation Science. (1988);  9 289-308
  • 41 Werker E., Ravid U., Putievsky E.. Structure of glandular hairs and identification of the main components of their secreted material in some species of the Labiatae.  Israel Journal of Botany. (1985);  34 31-45
  • 42 Ytterberg A. J., Peltier J. B., van Wijk K. J.. Protein profiling of plastoglobules in chloroplasts and chromoplasts; a surprising site for differential accumulation of metabolic enzymes.  Plant Physiology. (2006);  140 998-1008

E. Olmos

Departamento de Nutrición
CEBAS-CSIC

P.O. Box 164

30100 Espinardo-Murcia

Spain

Email: eolmos@cebas.csic.es

Editor: M. Riederer

    >