Synlett 2005(19): 2905-2910  
DOI: 10.1055/s-2005-921915
LETTER
© Georg Thieme Verlag Stuttgart · New York

A Novel Strategy for the Convergent Synthesis of 1,3,5,…-Polyols: Enone Formation, Asymmetric Dihydroxylation, Reductive Cleavage, Hydride Addition

Karsten Körber, Philippe Risch, Reinhard Brückner*
Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
Fax: +49(761)2036100; e-Mail: reinhard.brueckner@organik.chemie.uni-freiburg.de;
Further Information

Publication History

Received 27 September 2005
Publication Date:
04 November 2005 (online)

Abstract

Asymmetric dihydroxylation of α,β-unsaturated ketones provided α,β-dihydroxyketones with up to 100% ee. The Cα-O bond of these intermediates or their bis-TMS ethers, acetonides, phenylborates or orthoformiates was cleaved with SmI2, affording β-hydroxyketones. The latter can be reduced to furnish syn- or anti-configured 1,3-diols of any desired configuration.

    References

  • Reviews:
  • 1a Omura S. Tanaka H. In Macrolide Antibiotics: Chemistry, Biology and Practice   Omura S. Academic Press Inc.; New York: 1984.  p.351 
  • 1b Beau JM. In Recent Progress in the Chemical Synthesis of Antibiotics   Lukacs G. Ohno M. Springer Verlag; Berlin: 1990.  p.132 
  • 1c Rychnovsky SD. Chem. Rev.  1995,  95:  2021 
  • 1d Schneider C. In Organic Synthesis Highlights IV   Schmalz H.-G. Wiley-VCH; Weinheim: 2000.  p.58 
  • Leading references:
  • 2a RK-397: Denmark SE. Fujimori S. J. Am. Chem. Soc.  2005,  127:  8971 
  • 2b Nystatin, candidin polyol parts: Kadota I. Hu Y. Packard GK. Rychnovsky SD. Proc. Natl. Acad. Sci. U.S.A.  2004,  101:  11992 
  • 2c RK-397: Burova SA. McDonald FE. J. Am. Chem. Soc.  2004,  126:  2495 
  • 2d Roxaticin: Evans DA. Connell BT. J. Am. Chem. Soc.  2003,  125:  10899 
  • 2e RK-397 polyol part: Schneider C. Tolksdorf V. Rehfeuter M. Synlett  2002,  2098 
  • 2f Dermostatin A: Sinz CJ. Rychnovsky SD. Tetrahedron  2002,  58:  6561 
  • 2g Roxaticin polyol part: Paterson I. Collett LA. Tetrahedron Lett.  2001,  42:  1187 
  • 2h Mycoticin A: Dreher SD. Leighton JL. J. Am. Chem. Soc.  2001,  123:  341 
  • See, for example:
  • 3a Evans DA. Fitch DM. Smith TE. Cee VJ. J. Am. Chem. Soc.  2000,  122:  10033 
  • 3b Paterson I. Florence GJ. Gerlach K. Scott JP. Sereinig N. J. Am. Chem. Soc.  2001,  123:  9535 
  • 4 ‘Complex Mukaiyama aldol addition’ giving an unbranched dihydroxyaldol: Rychnovsky SD. Crossrow J. Org. Lett.  2003,  5:  2367 
  • See, for example:
  • 5a Lipshutz BH. Moretti R. Crow R. Tetrahedron Lett.  1989,  30:  15 
  • 5b Mori Y. Kohchi Y. Suzuki M. J. Org. Chem.  1991,  56:  631 
  • 5c Evans DA. Gauchet-Prunet JA. Carreira EM. Charette AB. J. Org. Chem.  1991,  56:  741 
  • 5d Wang Z. Deschênes D. J. Am. Chem. Soc.  1992,  114:  1090 
  • 5e Menges M. Brückner R. Liebigs Ann.  1995,  365 
  • 5f Allerheiligen S. Brückner R. Liebigs Ann./Recl.  1997,  1667 
  • Reviews:
  • 6a Lohray BB. Tetrahedron: Asymmetry  1992,  3:  1317 
  • 6b Johnson RA. Sharpless KB. Asymmetric Catalysis in Organic Synthesis   Ojima I. VCH; New York: 1993.  p.227 
  • 6c Kolb HC. VanNieuwenhze MS. Sharpless KB. Chem. Rev.  1994,  94:  2483 
  • 6d Poli G. Scolastico C. Methoden der organischen Chemie (Houben-Weyl)   4th ed., Vol. E21e:  Helmchen G. Hoffmann RW. Mulzer J. Schaumann E. Thieme; Stuttgart: 1995.  p.4547 
  • 6e Salvadori P. Pini D. Petri A. Synlett  1999,  1181 
  • 6f Johnson RA. Sharpless KB. In Catalytic Asymmetric Synthesis   2nd ed.:  Ojima I. Wiley-VCH; New York: 2000.  p.357 
  • 6g Bolm C. Hildebrand JP. Muniz K. In Catalytic Asymmetric Synthesis   2nd ed.:  Ojima I. Wiley-VCH; New York: 2000.  p.399 
  • 7 Blundell P. Ganguly AK. Girijavallabhan VM. Synlett  1994,  263 
  • 8 Sharpless KB. Amberg W. Bennani YL. Crispino GA. Hartung J. Jeong KS. Kwong HL. Morikawa K. Wang ZM. Xu D. Zhang X.-L. J. Org. Chem.  1992,  57:  2768 
  • 11 Still WC. Kahn M. Mitra A. J. Org. Chem.  1978,  43:  2923 
  • Enantioselective AD of achiral α,β-unsaturated ketones:
  • 12a Becker H. Soler MA. Sharpless KB. Tetrahedron  1995,  51:  1345 
  • 12b Takikawa H. Shimbo K.-i. Mori K. Liebigs Ann./Recl.  1997,  821 
  • 12c Yokoyama Y. Mori K. Liebigs Ann./Recl.  1997,  849 
  • 12d List B. Shabat D. Barbas CF. Lerner RA. Chem.-Eur. J.  1998,  4:  881 
  • 12e Giner J.-L. Tetrahedron Lett.  1998,  39:  2479 
  • 12f Shabat D. List B. Lerner RA. Barbas CF. Tetrahedron Lett.  1999,  40:  1437 
  • 12g Toshima H. Aramaki H. Ichihara A. Tetrahedron Lett.  1999,  40:  3587 
  • 12h Schuricht U. Endler K. Hennig L. Findeisen M. Welzel P. J. Prakt. Chem.  2000,  342:  761 
  • 12i Rieder C. Jaun B. Arigoni D. Helv. Chim. Acta  2000,  83:  2504 
  • 12j Naoki Y. Suzuki T. Shibasaki M. J. Org. Chem.  2002,  67:  2556 
  • 12k Cox RJ. de Andres-Gomez A. Godfrey CRA. Org. Biomol. Chem.  2003,  1:  3173 
  • 12l Kumar DN. Rao BV. Tetrahedron Lett.  2004,  45:  2227 
  • Diastereoselective AD of γ-chiral α,β-unsaturated ketones:
  • 13a Carreira EJ. DuBois J. J. Am. Chem. Soc.  1995,  117:  8106 
  • 13b Cid MB. Pattenden G. Synlett  1998,  540 
  • 13c Ishiyama H. Takemura T. Tsuda M. Kobayashi J.-i. J. Chem. Soc., Perkin Trans. 1  1999,  1163 
  • 13d Ohi K. Nishiyama S. Synlett  1999,  573 
  • 13e Lee D.-H. Rho M.-D. Tetrahedron Lett.  2000,  41:  2573 
  • 14 Diastereoselective AD of δ- and β′-chiral α,β-unsaturated ketones: Nicolaou KC. Li Y. Sugita K. Monenschein H. Guntupalli P. Mitchell HJ. Fylaktakidou KC. Vourloulis D. Giannakakou P. O’Brate A. J. Am. Chem. Soc.  2003,  125:  15443 
  • Diastereoselective AD of β′-chiral α,β-unsaturated ketones:
  • 15a Schuppan J. Ziemer B. Koert U. Tetrahedron Lett.  2000,  41:  621 
  • 15b Trost BM. Harrington PE. J. Am. Chem. Soc.  2004,  126:  5028 
  • 15c Trost BM. Wrobelski ST. Chisholm JD. Harrington PE. Jung M. J. Am. Chem. Soc.  2005,  127:  13589 
  • 16 Review: Kagan HB. Tetrahedron  2003,  59:  10351 
  • 18a Molander GH. Hahn G. J. Org. Chem.  1986,  51:  1135 
  • 18b Similarly an Oα-SiMe2 t-Bu bond was cleaved off a ketone by: Abad A. Agulló C. Arnó M. Cuñat AC. García MT. Zaragozá RJ. J. Org. Chem.  1996,  61:  5916 
  • 19a Mori Y. Yaegashi K. Furukawa H. J. Am. Chem. Soc.  1997,  119:  4557 
  • 19b Mori Y. Yaegashi K. Furukawa H. J. Org. Chem.  1998,  63:  6200 
  • 19c Voight EA. Seradj H. Roethle P. Burke SD. Org. Lett.  2004,  6:  4045 
  • 20 In lactones, oxygen-containing α-substituents including OH groups can be removed by SmI2 in THF-HMPA, too: Hanessian S. Girard C. Chiara JL. Tetrahedron Lett.  1992,  33:  573 
  • 21 Holton RA. Somoza C. Chai K.-B. Tetrahedron Lett.  1994,  35:  1665 
  • 22a Py S. Khuong-Huu F. Tetrahedron Lett.  1995,  36:  1661 
  • 22b Georg GI. Cheruvallath ZS. Vander Velde DG. Himes RH. Tetrahedron Lett.  1995,  36:  1783 
  • 22c Georg GI. Harriman GCB. Datta A. Ali S. Cheruvallath ZS. Vander Velde DG. Himes RH. J. Org. Chem.  1998,  63:  8926 
  • 23 Molander GH. Hahn G. J. Org. Chem.  1986,  51:  2596 
  • 24 White DJ. Nolen EG. Miller CH. J. Org. Chem.  1986,  51:  1150 
  • 25a Smith AB. Dunlap NK. Sulikowski GA. Tetrahedron Lett.  1988,  29:  439 
  • 25b Kim D. Min J. Ahn SK. Lee HW. Choi NS. Moon SK. Chem. Pharm. Bull.  2004,  52:  447 
  • 26 Hosaka M. Hayakawa H. Miyashita M. J. Chem. Soc., Perkin Trans. 1  2000,  4227 
  • 27 Rho H.-S. Synth. Commun.  1997,  27:  3887 
  • 28a

    (4 R )-4-Hydroxy-2-octanone ( 11a).
    At -78 °C a solution of SmI2 (0.1 M in THF, 42 mL, 4.2 mmol, 2.1 equiv) was added dropwise to a stirred solution of acetonide αSR-12a (0.40 g, 2.0 mmol) in THF (12 mL) and MeOH (6 mL). After 15 min the reaction mixture was gradually warmed to r.t. (within 30 min) and aq HCl (1 M, 4.2 mL) was added. After evaporating volatile material in vacuo the residue was diluted with H2O (10 mL) and extracted with t-BuOMe (3 × 15 mL). The combined organic extracts were washed with sat. aq NaHCO3 (10 mL) and brine (8 mL) and dried over MgSO4. Removal of the solvent in vacuo and purification of the residue by flash chromatography on silica gel [11] (column filling 1.5 cm × 15 cm, cyclohexane-EtOAc 4:1, 4 mL fractions) afforded the title compound (fractions 20-39, 0.186 g, 65%) as a colorless oil. 1H NMR (400 MHz, MHz, TMS internal standard in CDCl3): δ = 0.91 (t, J 8,7 = 7.1 Hz, 8-H3), 1.29-1.54 (m, 5-H2, 6-H2, 7-H2), 2.18 (s, 1-H3), AB signal (δA = 2.53, δB = 2.62, J AB = 17.7 Hz, A part in addition split by J A,4 = 9.0 Hz, B part in addition split by J B,4 = 2.9 Hz, 3-H2), 2.94 (br s, 4-OH), 4.03 (mc, 4-H). [α]D 20 -31.50 (c 0.20, CHCl3). IR (CDCl3): δ = 3565, 2960, 2935, 2875, 2860, 1705, 1470, 1460, 1415, 1385, 1365, 1315, 1275, 1165, 1060 cm-1. Anal. Calcd for C8H16O2 (144.2): C, 66.63; H, 11.18. Found: C, 66.74; H, 10.97.

  • 28b Enantiomer S-11a was prepared by an organocatalytic aldol addition (86% ee, 12% yield). See: Tang Z. Jiang F. Yu L.-T. Cui X. Gong L.-Z. Mi A.-Q. Jiang Y.-Z. Wu Y.-D. J. Am. Chem. Soc.  2003,  125:  5262 
  • Borinylated β-hydroxyketone and NaBH4:
  • 29a Narasaka K. Pai F.-C. Chem. Lett.  1980,  1415 
  • 29b Narasaka K. Pai F.-C. Tetrahedron  1984,  40:  2233 
  • 29c Chen K.-M. Hardtmann GE. Prasad K. Repic O. Shapiro MJ. Tetrahedron Lett.  1987,  28:  155 
  • 29d Chen K.-M. Gunderson KG. Hardtmann GE. Prasad K. Repic O. Shapiro MJ. Chem. Lett.  1987,  1923 
  • 30 BCl3-complexed β-hydroxyketone and tetraalkylammonium boronate: Sarko CS. Collibee SE. Knorr AR. DiMare M. J. Org. Chem.  1996,  61:  868 
  • 31 Reduction with DIBAL-H: Kiyooka S. Kuroda H. Shimasaki Y. Tetrahedron Lett.  1986,  27:  3009 
  • 32 Reduction with catecholborane: Evans DA. Hoveyda AH. J. Org. Chem.  1990,  55:  5190 
  • 33a Reduction with Zn(BH4)2: Kashihara H. Suemune H. Fujimoto K. Sakai K. Chem. Pharm. Bull.  1989,  37:  2610 ; in Et2O
  • 33b Dakin LA. Panek JS. Org. Lett.  2003,  5:  3995 ; in CH2Cl2
  • Reduction with tetraalkylammonium triacetoxyboro-hydride:
  • 34a Evans DA. Chapman KT. Tetrahedron Lett.  1986,  27:  5939 
  • 34b Evans DA. Chapman KT. Carreira EM. J. Am. Chem. Soc.  1988,  110:  3560 
  • 34c See also with sodium triacetoxyborohydride: Roeyeke Y. Keller M. Kluge H. Grabley S. Hammann P. Tetrahedron  1991,  47:  3335 
  • Intramolecular hydrosilylation:
  • 35a Anwar S. Davis AP. J. Chem. Soc., Chem. Commun.  1986,  831 
  • 35b Anwar S. Davis AP. Tetrahedron  1988,  44:  3761 
  • 36a Reduction with SmI2 and an aldehyde: Evans DA. Hoveyda AH. J. Am. Chem. Soc.  1990,  112:  6447 
  • Related Tishchenko reductions:
  • 36b Schneider C. Klapa K. Hansch M. Synlett  2005,  91  and literature cited therein
  • 37 LiClO4-complexed β-hydroxyketone and amine-complexed BH3: Narayana C. Reddy MR. Hair M. Kabalka GW. Tetrahedron Lett.  1997,  38:  7705 
  • 38a Reduction with SmI2: Keck GE. Wager CA. Sell T. Wager TT. J. Org. Chem.  1999,  64:  2172 
  • 38b The diastereoselectivity of this reduction is sensitive to solvent variation: Chopade PR. Davis TA. Prasad E. Flowers RA. Org. Lett.  2004,  6:  2685 
  • 39 LiI-complexed β-hydroxyketone and LiAlH(Ot-Bu)3: Ball M. Baron A. Bradshaw B. Omori H. MacCormick S. Thomas EJ. Tetrahedron Lett.  2004,  45:  8737 
9

Compounds αSR-10a-g, αRS-10a-g, 11a-g, αRS-12c, 13, 15, 17, 18, syn-21, and anti-21 provided correct 1H NMR spectra and combustion analyses. Compounds αSR-12a-g except c were too volatile for combustion analysis and intermediates 14, 16, and 19 deemed not worth it; these compounds were characterized by 1H NMR and low-resolution mass spectra only.

10

(3 S ,4 R )-3,4-Dihydroxy-2-octanone (α S R -10a).
At 0 °C, trans-3-octen-2-one (1.20 g, 1.38 mL, 9.51 mmol) was added to a stirred mixture of K2OsO2(OH)4 (35.0 mg, 0.095 mmol, 1.0 mol%), (DHQD)2PHAL (370.0 mg, 0.475 mmol, 5.0 mol%), NaHCO3 (2.40 g, 28.5 mmol, 3.0 equiv), K2CO3 (3.95 g, 28.5 mmol, 3.0 equiv), MeSO2NH2 (903 mg, 9.51 mmol, 1 equiv), and K3Fe(CN)6 (9.39 g, 28.5 mmol, 3.0 equiv) in t-BuOH (25 mL) and H2O (25 mL). After stirring for 60 h sat. aq Na2SO3 (120 mL) was added. The mixture was warmed to r.t. and extracted with EtOAc (3 × 70 mL). The combined organic extracts were washed with brine (60 mL) and dried over MgSO4. Removal of the solvent in vacuo and purification of the residue by flash chromatography on silica gel [11] (column filling 5 cm × 20 cm, cyclohexane-EtOAc 1:2, 60 mL fractions) provided the title compound (fractions 5-8, 1.39 g, 89%) as a colorless oil. The ee was ³99% according to chiral GC {CP-Chirasil-Dex CB 25 m × 0.25 mm catalog number CP7502; from 60 °C/10 min at 5 °C/min to 170 °C/20 min; 80 kPa, t R (major enantiomer) = 26.46 min; no compound eluted around t R = 25.71 min [which was the independently measured value of t R (minor enantiomer)]}. 1H NMR (500 MHz, TMS internal standard in CDCl3): δ = 0.93 (t, J 8,7 = 7.1 Hz, 8-H3), 1.34-1.42 (m, 7-H2, 6-H1), 1.44-1.50 (m, 6-H2), 1.66 (mc, presumably interpretable as ddd, J 5,4 = J 5,6-H ( 1) = J 5,6-H ( 2) = 6.9 Hz, 5-H2), superimposed partly by 1.73 (br s, 4-OH), 2.28 (s, 1-H3), 3.70 (br s, 3-OH), 3.95 (td, J 4,5 = 6.9 Hz, J 4,3 = 1.4 Hz, 4-H), 4.08 (d, J 3,4 = 1.5 Hz, 3-H). [α]D 20 +94.6 (c 0.45, CHCl3). IR (CDCl3): 3575, 3465, 2960, 2935, 2875, 2860, 1715, 1465, 1460, 1385, 1360, 1235, 1130, 1090, 935, 910, 885 cm-1. Anal. Calcd for C8H16O3 (160.2): C, 59.97; H, 10.07. Found: C, 59.68; H, 10.09.

17

Confer ref. 18a for a different rationalization.

40

Methyl (6 R )-7-[(4 R )-2,2-Dimethyl-1,3-dioxolan-4-yl]-6-hydroxy-4-oxoheptanoate ( 24).
A suspension of 1,2-diiodoethane (2.062 g, 7.316 mmol, 3.0 equiv) and Sm powder 40 mesh (1.155 g, 7.316 mmol, 3.15 equiv) in THF (70 mL) was stirred at r.t. for 2 h. A deep-blue solution of SmI2 was obtained. At -78 °C acetonide 25 (805 mg, 2.44 mmol) in THF-MeOH 2:1 (30 mL) was added within 10 min. After another 10 min, the mixture was warmed to r.t. and the reaction quenched 20 min later by the addition of aq HCl (1 M, 7.4 mL). The aqueous phase was separated and extracted with t-BuOMe (3 × 25 mL). The combined organic phases were washed successively with sat. aq NaHCO3 (15 mL) and brine (12 mL) and dried over MgSO4. Removal of the solvent in vacuo and purification of the residue by flash chromatography on silica gel [11] (column filling 3 cm × 20 cm, eluent = cyclohexane-EtOAc, 40:60) provided the title compound (fractions 8-24, 601 mg, 90%). 1H NMR (500 MHz, CDCl3): δ = 1.36 and 1.41 [2 × s, 2′-(CH3)2], AB signal (δA = 1.69, δB = 1.73, J AB = 13.1 Hz, in addition split by J 7-H ( A),6 = 7.3 Hz,* J 7-H ( A),4 = 4.1 Hz,*
J 7-H ( B),4 = 8.3 Hz,** J 7-H ( B),6 = 4.9 Hz,** 7-H2), presumably extreme AB signal where the 8 off-center signals are too small to be identified (so that J AB cannot be extracted) so that the best description is: 2.61 (dd, J 3-H ( 1),2-H ( 1) = 6.6 Hz, J 3-H ( 1),2-H ( 2) = 3.8 Hz), 2.62 (dd, J 3-H ( 2),2-H ( 2) = 6.6 Hz,***
J 3-H ( 2),2-H ( 1) = 2.7 Hz,*** 3-H2), 2.68 and 2.76 (2 × mc, 2-H2, 5-H2), 3.26 (d, J OH,6 = 3.5 Hz, 6-OH), 3.57 (dd, J gem = J 5 -H ( 1),4 = 7.8 Hz, 5′-H1), 3.68 (s, 1-OCH3), 4.09 (dd, J gem = 7.9 Hz, J 5 -H ( 2), 4 = 6.1 Hz, 5′-H2), 4.25-4.33 (m, 6-H, 4′-H); *, **, *** coupling constants exchangeable. 13C NMR [75 MHz, CDCl3; APT spectrum, peak orientation ‘up’ (‘+’) for CH3 and CH and ‘down’ (‘-’) for CH2 and Cquat]: δ = ‘+’ 25.67 and ‘+’ 26.91 [2′-(CH3)2], ‘-’ 27.55 (C-2), ‘-’ 37.80 (C-3), ‘-’ 39.94 (C-7), ‘-’ 49.66 (C-5), ‘+’ 51.88 (1-OCH3), ‘+’ 65.46 (C-6), ‘-’ 69.64 (C-5’), ‘+’ 73.37 (C-4’), ‘-’ 108.75 (C-2’), ‘-’ 173.21 (C-1), ‘-’ 209.34 (C-4). [α]D 20
-22.6 (c 1.92, CHCl3). IR (film): 3490, 3015, 2985, 2945, 1735, 1715, 1435, 1415, 1370, 1215, 1165, 1060, 990, 870, 855 cm-1. Anal. Calcd for C13H22O6 (274.3): C, 56.92; H, 8.08. Found: C, 57.12; H, 7.99.