Synthesis 2005(19): 3463-3467  
DOI: 10.1055/s-2005-918458
PAPER
© Georg Thieme Verlag Stuttgart · New York

The Origins of Periselectivity and Substituent Effects in Electrocyclizations of o-Nitrosostyrenes: A Computational Study

Andrew G. Leach*a, K. N. Houk*b, Ian W. Davies*c
a AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK
e-Mail: andrew.leach@astrazeneca.com;
b Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
e-Mail: houk@chem.ucla.edu;
c Department of Process Research, Merck and Co., Inc., PO Box 2000, Rahway, NJ 07065-0900, USA
e-Mail: ian_davies1@merck.com;
Further Information

Publication History

Received 15 September 2005
Publication Date:
14 November 2005 (online)

Abstract

Density functional theory has been used to study four pericyclic, or pseudopericyclic, reactions that may be involved in the reductive transformation of o-nitrostyrenes to indoles. These are two electrocyclizations and two 1,5-hydride shifts. The reactions of substituted examples show computed relative barrier heights in agreement with experimental observations.

    References

  • 1 Davies IW. Smitrovich JH. Sidler R. Qu C. Gresham V. Bazaral C. Tetrahedron  2005,  61:  6425 
  • 2 Gaussian 03, Revision B.2   Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Montgomery JAJr. Vreven T. Kudin KN. Burant JC. Millam JM. Iyengar SS. Tomasi J. Barone V. Mennucci B. Cossi M. Scalmani G. Rega N. Petersson GA. Nakatsuji H. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Klene M. Li X. Knox JE. Hratchian HP. Cross JB. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Ayala PY. Morokuma K. Voth GA. Salvador P. Dannenberg JJ. Zakrzewski VG. Dapprich S. Daniels AD. Strain MC. Farkas O. Malick DK. Rabuck AD. Raghavachari K. Foresman JB. Ortiz JV. Cui Q. Baboul AG. Clifford S. Cioslowski J. Stefanov BB. Liu G. Liashenko A. Piskorz P. Komaromi I. Martin RL. Fox DJ. Keith T. Al-Laham MA. Peng CY. Nanayakkara A. Challacombe M. Gill PMW. Johnson B. Chen W. Wong MW. Gonzalez C. Pople JA. Gaussian Inc.; Pittsburgh PA: 2003. 
  • 3a Birney DM. J. Am. Chem. Soc.  2000,  122:  10917 
  • 3b Birney DM. J. Org. Chem.  1996,  61:  243 
  • 4 Davies IW. Guner VA. Houk KN. Org. Lett.  2004,  6:  743 
  • 5 Leach AG. Houk KN. Chem. Commun. (Cambridge)  2002,  1243 
  • 6a Hayashi Y. Yamaguchi J. Hibino K. Shoji M. Tetrahedron Lett.  2003,  44:  8293 
  • 6b Zhong G. Angew. Chem. Int. Ed.  2003,  42:  4247 
  • 6c Brown SP. Brochu MP. Sinz CJ. MacMillan DWC. J. Am. Chem. Soc.  2003,  125:  10808 
  • 7a Becke AD. J. Chem. Phys.  1993,  98:  5648 
  • 7b Becke AD. J. Chem. Phys.  1993,  98:  1372 
  • 7c Lee C. Yang W. Parr RG. Phys. Rev. B  1988,  37:  785 
  • 8 Cosmo Polarized Continuum Model (CPCM): Barone V. Cossi M. J. Phys. Chem. A: At., Mol., Opt. Phys.  1998,  102:  1995 
  • 9 Takano Y. Houk KN. J. Chem. Theory Comput.  2005,  1:  70 
  • 10a Hoffmann R. Gleiter R. Mallory F. J. Am. Chem. Soc.  1970,  92:  1460 
  • 10b Yu Z.-X. Caramella P. Houk KN. J. Am. Chem. Soc.  2003,  125:  15420 
  • 11a Leach AG. Houk KN. Org. Biomol. Chem.  2003,  1389 
  • 11b Leach AG. Houk KN. J. Am. Chem. Soc.  2002,  124:  14820 
  • 12 Yamaguchi K. Jensen F. Dorigo A. Houk KN. Chem. Phys. Lett.  1988,  149:  537 
  • 13 Cheong PH. Houk KN. J. Am. Chem. Soc.  2004,  126:  13912 
  • 14a Woodward RB. Hoffmann R. Angew. Chem. Int. Ed. Engl.  1969,  8:  781 
  • 14b Woodward RB. Hoffmann R. The Conservation of Orbital Symmetry   VCH; Weinheim: 1970.  p.173