Sprache · Stimme · Gehör 2005; 29(3): 139-143
DOI: 10.1055/s-2005-873121
Schwerpunktthema
© Georg Thieme Verlag KG Stuttgart · New York

Untersuchungen neuronaler Sprachnetzwerke mit der Transkraniellen Magnetstimulation (TMS)

Transcranial Magnetic Stimulation for the Assessment of Language FunctionR. Sparing1 , I. G. Meister1 , F. M. Mottaghy2
  • 1Neurologische Klinik, Universitätsklinikum Aachen (Leiter: Univ.-Prof. Dr. med. J. Noth)
  • 2Abt. Nuklearmedizin, Radiologie III, Universitätsklinikum Ulm (Leiter: Univ.-Prof. Dr. med. S. N. Reske)
Further Information

Publication History

Publication Date:
29 September 2005 (online)

Zusammenfassung

Die funktionellen bildgebenden Verfahren wie die funktionelle Kernspintomographie (fMRT) oder die Positronenemissionstomographie (PET) haben in der Vergangenheit zur Lokalisation kortikaler sprachlicher Netzwerke in erheblicher Weise beigetragen. Die funktionelle Relevanz dieser Netzwerke kann durch diese korrelativen Ansätze allerdings nur unzureichend dargestellt werden. Dies kann durch den ergänzenden Einsatz der Interferenzmethode transkranielle Magnetstimulation (TMS) geprüft werden. Die TMS ist eine nicht-invasive schmerzlose neurophysiologische Technik mittels der die Funktion kortikaler Hirnareale vorübergehend beeinflusst werden kann. TMS kann die Leistung bei sprachlichen Aufgaben sowohl kurzzeitig verschlechtern, als auch verbessern. Seit der Einführung der TMS 1985 konnten zahlreiche TMS-Untersuchungen wichtige Erkenntnisse bei der Erforschung sprachlicher Hirnfunktionen liefern. Trotz einiger Ansätze konnte eine klinische Applikation von TMS bei Patienten mit Sprachstörungen hingegen noch nicht etabliert werden. Wir geben einen kurzen Überblick über verschiedene TMS-Untersuchungen im Zusammenhang mit Sprache, um die Möglichkeiten dieser Technik zu veranschaulichen.

Abstract

The interference approach transcranial magnetic stimulation (TMS) has to be seen as a complimentary tool among the modern non-invasive neuroscience methods. While functional imaging methods like functional magnetic resonance tomography or positron emission tomography reveal correlational information on activated neuronal networks that are not necessarily activated due to the performed task but can also show epiphenominally activated brain areas, TMS has the potential to interfere with brain activity hence revealing information on the causality. Studying language function, TMS has proven to be able to enhance naming as well as to interfere with specific grammatical features. Whether TMS or repetitive TMS could potentially aid linguistic therapy in the rehabilitation phase of aphasic patients should be subject of further investigations.

Literaturverzeichnis

  • 1 Fritsch G, Hitzig E. Über die elektrische Erregbarkeit des Großhirns.  Archive für Anatomie, Physiologie und wissenschaftliche Medizin, Leipzig. 1870;  37 300-332
  • 2 Penfield W, Boldrey C. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation.  Brain. 1937;  60 389-443
  • 3 Barker A T, Jalinous R, Freeston I L. Non-invasive magnetic stimulation of human motor cortex.  The Lancet. 1985;  11 1106-1107
  • 4 Wassermann E M. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5 - 7, 1996.  Electroencephalography and Clinical Neurophysiology. 1998;  108 11-16
  • 5 Belmaker B, Fitzgerald P, George M S. et al . Managing the risks of repetitive transcranial stimulation.  CNS Spectrums. 2003;  8 489
  • 6 Amassian V E, Cracco R Q, Maccabee P J. et al . Suppression of visual perception by magnetic coil stimulation of human occipital cortex.  Electroencephalography and Clinical Neurophysiology. 1989;  71 458-462
  • 7 Mottaghy F M, Gangitano M, Krause B J. et al . Chronometry of parietal and prefrontal activations in verbal working memory revealed by transcranial magnetic stimulation.  Neuroimage. 2003;  18 565-575
  • 8 Mottaghy F M, Pascual-Leone A, Kemna L J. et al . Modulation of a brain-behavior relationship in verbal working memory by rTMS.  Cognitive Brain Research. 2003;  15 241-249
  • 9 Mottaghy F M, Krause B J, Kemna L J. et al . Modulation of the neuronal circuitry subserving working memory in healthy human subjects by repetitive transcranial magnetic stimulation.  Neuroscience Letters. 2000;  280 167-170
  • 10 Wada J, Rasmussen T. Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance.  Journal of Neurosurgery. 1960;  17 266-282
  • 11 Pascual-Leone A, Gates J R, Dhuna A. Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation.  Neurology. 1991;  41 697-702
  • 12 Claus D, Weis M, Treig T. et al . Influence of repetitive magnetic stimuli on verbal comprehension.  Journal of Neurology. 1993;  240 149-150
  • 13 Jennum P, Friberg L, Fuglsang-Frederiksen A. et al . Speech localization using repetitive transcranial magnetic stimulation.  Neurology. 1994;  44 269-273
  • 14 Michelucci R, Valzania F, Passarelli D. et al . Rapid-rate transcranial magnetic stimulation and heimspheric language dominance: usefulness and safety in epilepsy.  Neurology. 1994;  44 1697-1700
  • 15 Epstein C M, Lah J J, Meador K. et al . Optimum stimulus parameters for lateralized suppression of speech with magnetic brain stimulation.  Neurology. 1996;  47 1590-1593
  • 16 Epstein C M, Meador K J, Loring D W. et al . Localization and characterization of speech arrest during transcranial magnetic stimulation.  Electroencephalography and Clinical Neurophysiology. 1999;  110 1073-1079
  • 17 Stewart L, Walsh V, Frith U. et al . TMS produces two dissociable types of speech disruption.  Neuroimage. 2001;  13 472-478
  • 18 Stewart L, Walsh V, Frith U. et al . Transcranial magnetic stimulation produces speech arrest but not song arrest.  Annals New York Academy of Sciences. 2001;  930 433-435
  • 19 Knecht S, Floel A, Drager B. et al . Degree of language lateralization determines susceptibility to unilateral brain lesions.  Nature Neuroscience. 2002;  5 695-699
  • 20 Wassermann E M, Grafman J, Berry C. et al . Use and safety of a new repetitive transcranial magnetic stimulator.  Electroencephalography and Clinical Neurophysiology. 1996;  101 412-417
  • 21 Flitman S S, Grafman J, Wassermann E M. Linguistic processing during repetitive transcranial magnetic stimulation.  Neurology. 1998;  50 175-181
  • 22 Coslett H B, Monsul N. Reading with the right hemisphere: evidence from transcranial magnetic stimulation.  Brain and Language. 1994;  46 198-211
  • 23 Shapiro K A, Pascual-Leone A, Mottaghy F M. et al . Grammatical distinctions in the left frontal cortex.  Journal of Cognitive Neuroscience. 2001;  13 713-720
  • 24 Töpper R, Mottaghy F M, Brügmann M. et al . Facilitation of picture naming by focal transcranial magnetic stimulation of WernickeŽs area.  Experimental Brain Research. 1998;  121 371-378
  • 25 Mottaghy F M, Hungs M, Brügmann M. et al . Facilitation of picture naming after repetitive transcranial magnetic stimulation.  Neurology. 1999;  53 1806-1812
  • 26 Sparing R, Mottaghy F M, Hungs M. et al . Repetitive transcranial magnetic stimulation effects on language function depend on the stimulation parameters.  Journal of Clinical Neurophysiology. 2001;  18 326-330
  • 27 Martin P I, Naeser M A, Theoret H. et al . Transcranial magnetic stimulation as a complementary treatment for aphasia.  Seminars in Speech and Language. 2004;  25 181-191
  • 28 Naeser M A, Martin P I, Nicholas M. et al . Improved picture naming in chronic aphasia after TMS to part of right Broca's area: an open-protocol study.  Brain and Language. 2005;  93 95-105
  • 29 Tokimura H, Tokimura Y, Oliviero A. et al . Speech-induced changes in corticospinal excitability.  Annals of Neurology. 1996;  40 628-634
  • 30 Seyal M, Mull B, Bhullar N. et al . Anticipation and execution of a simple reading task enhance corticospinal excitability.  Clinical Neurophysiology. 1999;  110 424-429
  • 31 Meister I G, Boroojerdi B, Foltys H. et al . Motor cortex hand area and speech: implications for the development of language.  Neuropsychologia. 2003;  41 401-406
  • 32 Sparing R, Meister I G, Foltys H. et al . Motor cortex excitability is enhanced during loud reading.  Clinical Neurophysiology. 2000;  111 S120
  • 33 Meister I G, Boroojerdi B, Foltys H. et al . Involvement of the non-dominant hemisphere in recovery from aphasia assessed by transcranial magnetic stimulation.  Journal of Neurology. 2001;  249 S68-S69
  • 34 Floel A, Ellger T, Breitenstein C. et al . Language perception activates the hand motor cortex: implications for motor theories of speech perception.  European Journal of Neuroscience. 2003;  18 704-708
  • 35 Fadiga L, Craighero L, Buccino G. et al . Speech listening specifically modulates the excitability of tongue muscles: a TMS study.  European Journal of Neuroscience. 2002;  15 399-402
  • 36 Oliveri M, Finocchiaro C, Shapiro K. et al . All talk and no action: a transcranial magnetic stimulation study of motor cortex activation during action word production.  Journal of Cognitive Neuroscience. 2004;  16 374-381
  • 37 Rizzolatti G, Craighero L. The mirror-neuron system.  Annual Reviews in Neuroscience. 2004;  27 169-192

PD Dr. med. Felix M. Mottaghy

Abteilung Nuklearmedizin (Radiologie III)

Robert Koch-Str. 8

89081 Ulm

Email: felix_mottaghy@yahoo.de

    >