Handchir Mikrochir Plast Chir 2005; 37(6): 383-395
DOI: 10.1055/s-2005-872983
Originalarbeit

Georg Thieme Verlag KG Stuttgart · New York

Mechanismen und Therapiestrategien zur Angiogeneseinduktion in der Plastischen Chirurgie

Mechanisms and Therapeutic Strategies for the Induction of Angiogenesis in Plastic SurgeryH.-G. Machens1 , P. Mailänder1
  • 1Sektion für Plastische und Handchirurgie - Zentrum für Schwerbrandverletzte (Leiter: Prof. Dr. P. Mailänder), Universitätsklinikum Schleswig-Holstein, Campus Lübeck
Further Information

Publication History

Eingang des Manuskriptes: 14.9.2005

Angenommen: 22.9.2005

Publication Date:
02 January 2006 (online)

Zusammenfassung

Die Plastische Chirurgie hat schon immer ein besonderes Interesse an angiogenetischen Regulierungsprozessen im Rahmen der Gewebeheilung gehabt. Viele der chirurgischen Pionierleistungen früherer Tage, wie zum Beispiel die verschiedenen plastisch-chirurgischen Techniken des gestielten Gewebetransfers und der freien mikrovaskulären Gewebetransplantation, sind heute chirurgischer Standard, aber erst seit 10 bis 15 Jahren haben wir auch die technischen und apparativen Möglichkeiten, uns zunehmend auch mit den molekularen Mechanismen der funktionellen Blutgefäßbildung in vivo zu beschäftigen und diese besser zu verstehen. Dieser Übersichtsartikel will eine zusammenfassende Darstellung verschiedener Mechanismen und Therapiestrategien zur Angiogeneseinduktion liefern, welche in der Plastischen Chirurgie klinisch und experimentell in diesem Zusammenhang beobachtet und angewendet werden können.

Abstract

Plastic Surgery has been focussing on wound healing and therefore also on angiogenic regulatory mechanisms since many years. Nowadays most of the pioneering work including different plastic surgical techniques like tissue transfer and microsurgery are surgical standard. But only since 10 to 15 years we have tools and methods to investigate the molecular mechanisms of functional angiogenesis in vivo. This article presents some mechanisms and therapeutic strategies for angiogenesis, which can be applied both clinically and experimentally in plastic surgery.

Literatur

  • 1 Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner J M. Isolation of putative progenitor endothelial cells for angiogenesis.  Science. 1997;  275 964-967
  • 2 Ashrafpour H, Huang N, Neligan P C, Forrest C R, Addison P D, Moses M A, Levine R H, Pang C Y. Vasodilator effect and mechanism of action of vascular endothelial growth factor in skin vasculature.  Am J Physiol Heart Circ Physiol. 2004;  286 H946-H954
  • 3 Askari A, Unzek S, Goldman C K, Ellis S G, Thomas J D, DiCorleto P E, Topol E J, Penn M S. Cellular, but not direct, adenoviral delivery of vascular endothelial growth factor results in improved left ventricular function and neovascularization in dilated ischemic cardiomyopathy.  J Am Coll Cardiol. 2004;  43 1908-1914
  • 4 Baker G L, Kleinert J M. Digit replantation in infants and young children: determinants of survival.  Plast Reconstr Surg. 1994;  94 139-145
  • 5 Borges J, Mueller M C, Padron N T, Tegtmeier F, Lang E M, Stark G B. Engineered adipose tissue supplied by functional microvessels.  Tissue Eng. 2003;  9 1263-1270
  • 6 Caterson E J, Nesti L J, Danielson K G, Tuan R S. Human marrow-derived mesenchymal progenitor cells: Isolation, culture expansion, and analysis of differentiation.  Mol Biotechnol. 2002;  20 245-256
  • 7 Cherry G W, Austad E, Pasyk K, McClatchey K, Rohrich R J. Increased survival and vascularity of random-pattern skin flaps elevated in controlled, expanded skin.  Plast Reconstr Surg. 1983;  72 680-687
  • 8 Cleveland Jr J C, Raeburn C, Harken A. Clinical applications of ischemic preconditioning: From head to toe.  Surgery. 2001;  129 664-667
  • 9 Erdag G, Sheridan R L. Fibroblasts improve performance of cultured composite skin substitutes on athymic mice.  Burns. 2004;  30 322-328
  • 10 Fansa H, Schneider W, Keilhoff G. Revascularization of tissue-engineered nerve grafts and invasion of macrophages.  Tissue Eng. 2001;  7 519-524
  • 11 Forough R, Wang X, Martinez-Lemus L A, Thomas D, Sun Z, Motamed K, Parker J L, Meininger G A. Cell-based and direct gene transfer-induced angiogenesis via a secreted chimeric fibroblast growth factor-1 (sp-FGF‐1) in the chick chorioallantoic membrane (CAM).  Angiogenesis. 2003;  6 47-54
  • 12 Frese J, Kohaus H. Covering of skin defect wounds with a synthetic skin substitute. Conditioning of defect wounds of various origins with a synthetic skin substitute as a preparation for skin transplantation.  Fortschr Med. 1977;  95 2687-2690
  • 13 Giunta R E, Holzbach T, Taskov C, Holm P S, Konerding M A, Schams D, Biemer E, Gänsbacher B. AdVEGF165 gene transfer increases survival in overdimensioned skin flaps.  J Gene Med. 2005;  7 297-306
  • 14 Gysin R, Wergedal J E, Sheng M H, Kasukawa Y, Miyakoshi N, Chen S T, Peng H, Lau K H, Mohan S, Baylink D J. Ex vivo gene therapy with stromal cells transduced with a retroviral vector containing the BMP4 gene completely heals critical size calvarial defect in rats.  Gene Ther. 2002;  9 991-999
  • 15 Hattan N, Warltier D, Gu W, Kolz C, Chilian W M, Weihrauch D. Autologous vascular smooth muscle cell-based myocardial gene therapy to induce coronary collateral growth.  Am J Physiol Heart Circ Physiol. 2004;  28 H488-H493
  • 16 Hayward P G, Alison Jr W E, Carp S S, Hui P S, Robson M C. Local infiltration of an angiogenic growth factor does not stimulate the delay phenomenon.  Br J Plast Surg. 1991;  44 526-529
  • 17 Heimburg von D, Kuberka M, Rendchen R, Hemmrich K, Rau G, Pallua N. Preadipocyte-loaded collagen scaffolds with enlarged pore size for improved soft tissue engineering.  Int J Artif Organs. 2003;  26 1064-1076
  • 18 Heistein J B, Cook P A. Factors affecting composite graft survival in digital tip amputations.  Ann Plast Surg. 2003;  50 299-303
  • 19 Hijjawi J, Mogford J E, Chandler L A, Cross K J, Said H, Sosnowski B A, Mustoe T A. Platelet-derived growth factor B, but not fibroblast growth factor 2, plasmid DNA improves survival of ischemic myocutaneous flaps.  Arch Surg. 2004;  139 142-147
  • 20 Hisaka Y, Ieda M, Nakamura T, Kosai K, Ogawa S, Fukuda K. Powerful and controllable angiogenesis by using gene-modified cells expressing human hepatocyte growth factor and thymidine kinase.  J Am Coll Cardiol. 2004;  43 1915-1922
  • 21 Hockel M, Burke J F. Angiotropin treatment prevents flap necrosis and enhances dermal regeneration in rabbits.  Arch Surg. 1989;  124 693-698
  • 22 Huss R, Heil M, Moosmann S, Ziegelhoeffer T, Sagebiel S, Seliger C, Kinston S, Gottgens B. Improved arteriogenesis with simultaneous skeletal muscle repair in ischemic tissue by SCL+ multipotent adult progenitor cell clones from peripheral blood.  J Vasc Res. 2004;  41 422-431
  • 23 Khan A, Ashrafpour H, Huang N, Neligan P C, Kontos C, Zhong A, Forrest C R, Pang C Y. Acute local subcutaneous VEGF165 injection for augmentation of skin flap viability: Efficacy and mechanism.  Am J Physiol Regul Integr Comp Physiol. 2004;  287 R1219-R1229
  • 24 Kneser U, Polykandriotis E, Heidner K, Ohnolz J, Bach A, Kopp J, Horch R E. Induzierte gerichtete Vaskularisation mit einer arteriovenösen Gefäßschleife in einer biogenen Matrix zum Knochengewebeersatz durch Tissue Engineering.  EWMA Journal. 2005;  5 16-21
  • 25 Kubulus D, Roesken F, Amon M, Rucker M, Bauer M, Bauer I, Menger M D. Mechanism of the delay phenomenon: Tissue protection is mediated by heme oxygenase-1.  Am J Physiol Heart Circ Physiol. 2004;  287 H2332-H2340
  • 26 Kurz H, Burri P H, Djonov V G. Angiogenesis and vascular remodeling by intussusception: From form to function.  News Physiol Sci. 2003;  18 65-70
  • 27 Lamme E N, Van Leeuwen R T, Brandsma K, Van Marle J, Middelkoop E. Higher numbers of autologous fibroblasts in an artificial dermal substitute improve tissue regeneration and modulate scar tissue formation.  J Pathol. 2000;  190 595-603
  • 28 Lamme E N, van Leeuwen R T, Mekkes J R, Middelkoop E. Allogeneic fibroblasts in dermal substitutes induce inflammation and scar formation.  Wound Repair Regen. 2002;  10 152-160
  • 29 Lantieri L A, Martin-Garcia N, Wechsler J, Mitrofanoff M, Raulo Y, Baruch J P. Vascular endothelial growth factor expression in expanded tissue: A possible mechanism of angiogenesis in tissue expansion.  Plast Reconstr Surg. 1998;  101 392-398
  • 30 Lee A C, Yu V M, Lowe 3rd J B. Controlled release of nerve growth factor enhances sciatic nerve regeneration.  Exp Neurol. 2003;  184 295-303
  • 31 Lee J Y, Nam S H, Im S Y, Park Y J, Lee Y M, Seol Y J, Chung C P, Lee S J. Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials.  J Control Release. 2002;  17 187-197
  • 32 Lei Y, Haider H Kh, Shujia J, Sim E S. Therapeutic angiogenesis. Devising new strategies based on past experiences.  Basic Res Cardiol. 2004;  99 121-132
  • 33 Lu Y, Shansky J, Del Tatto M, Ferland P, Wang X, Vandenburgh H. Recombinant vascular endothelial growth factor secreted from tissue-engineered bioartificial muscles promotes local angiogenesis.  Circulation. 2001;  104 594-599
  • 34 Lundborg G. Alternatives to autologous nerve grafts.  Handchir Mikrochir Plast Chir. 2004;  36 1-7
  • 35 Lutolf M P, Hubbell J A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering.  Nat Biotechnol. 2005;  23 47-55
  • 36 Machens H G, Mailänder P, Pasel J, Lutz B S, Funke M, Siemers F, Berger A C. Flap perfusion after free musculocutaneous tissue transfer: The impact of postoperative complications.  Plast Reconstr Surg. 2000;  105 2395-2399
  • 37 Machens H G, Salehi J, Weich H, Münch S, Siemers F, Krapohl B D, Herter K H, Krüger S, Reichert B, Berger A, Vogt P, Mailänder P. Angiogenic effects of injected VEGF165 and sVEGFR‐1 (sFLT‐1) in a rat flap model.  J Surg Res. 2003;  111 136-142
  • 38 Maichle A, Niedworok C, Spanholtz T, Lindermaier W, Herbort-Brand S, Krüger S, Stöckelhuber B, Krapohl B D, Mailänder P, Machens H G. Timing and target of temporary VEGF165 gene expression in an ischemic rat flap model.  Langenbeck's Arch Surg. 2004;  389 447 (abstract)
  • 39 Myers M B, Cherry G. Mechanisms of the delay phenomenon.  Plast Reconstr Surg. 1969;  44 52-57
  • 40 Ozawa C R, Banfi A, Glazer N L, Thurston G, Springer M L, Kraft P E, McDonald D M, Blau H M. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis.  J Clin Invest. 2004;  113 516-527
  • 41 Pevec W C, Ndoye A, Brinsky J L, Wiltse S, Cheung A T. New blood vessels can be induced to invade ischemic skeletal muscle.  J Vasc Surg. 1996;  24 534-541
  • 42 Planat-Benard V, Silvestre J S, Cousin B, Andre M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, Casteilla L. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives.  Circulation. 2004;  109 656-663
  • 43 Rinsch C, Quinodoz P, Pittet B, Alizadeh N, Baetens D, Montandon D, Aebischer P, Pepper M S. Delivery of FGF‐2 but not VEGF by encapsulated genetically engineered myoblasts improves survival and vascularization in a model of acute skin flap ischemia.  Gene Ther. 2001;  8 523-533
  • 44 Schwarz E R, Speakman M T, Patterson M, Hale S S, Isner J M, Kedes L H, Kloner R A. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat - angiogenesis and angioma formation.  J Am Coll Cardiol. 2000;  35 1323-1330
  • 45 Semashko D, Song Y, Silverman D G, Weinberg H. Ischemic induction of neovascularization: A study by fluorometric analysis.  Microsurgery. 1985;  6 244-248
  • 46 Shi S, Gronthos S, Chen S, Reddi A, Counter C M, Robey P G, Wang C Y. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression.  Nat Biotechnol. 2002;  20 587-591
  • 47 Siemionow M, Arslan E. Ischemia/reperfusion injury: A review in relation to free tissue transfers.  Microsurgery. 2004;  24 468-475
  • 48 Söllner S, Spanholtz T, Niedworok C, Maichle A, Lindenmaier W, Krüger S, Stöckelhuber B, Hellwig-Bürgel T, Mailänder P, Machens H G. bFGF and VEGF165 induce stable alpha-sm-actin positive arteriogenesis after transplantation of isogenic adenovirally transfected fibroblasts in vivo.  Langenbeck's Arch Surg. 2004;  389 450 (abstract)
  • 49 Sondell M, Lundborg G, Kanje M. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system.  J Neurosci. 1999;  19 5731-5740
  • 50 Spanholtz T, Maichle A, Niedworok C, Lindermaier W, Herbort-Brand S, Krüger S, Stöckelhuber B, Krapohl B D, Mailänder P, Machens H G. Synergistic therapeutic effects of bFGF and VEGF after transplantation of adenovirally modified fibroblasts in an ischemic rat flap model.  Langenbeck's Arch Surg. 2004;  389 448-(abstract)
  • 51 George St JA. Gene therapy progress and prospects: Adenoviral vectors.  Gene Ther. 2003;  10 1135-1141
  • 52 Sundberg C, Nagy J A, Brown L F, Feng D, Eckelhoefer I A, Manseau E J, Dvorak A M, Dvorak H F. Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery.  Am J Pathol. 2001;  158 1145-1160
  • 53 Supp D M, Boyce S T. Overexpression of vascular endothelial growth factor accelerates early vascularization and improves healing of genetically modified cultured skin substitutes.  J Burn Care Rehabil. 2002;  23 10-20
  • 54 Supp D M, Wilson-Landy K, Boyce S T. Human dermal microvascular endothelial cells form vascular analogs in cultured skin substitutes after grafting to athymic mice.  FASEB J. 2002;  16 797-804
  • 55 Tanaka Y, Tsutsumi A, Crowe D M, Tajima S, Morrison W A. Generation of an autologous tissue (matrix) flap by combining an arteriovenous shunt loop with artificial skin in rats: Preliminary report.  Br J Plast Surg. 2000;  53 51-57
  • 56 Wenger A, Stahl A, Weber H, Finkenzeller G, Augustin H G, Stark G B, Kneser U. Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering.  Tissue Eng. 2004;  10 1536-1547
  • 57 Yamashiro H, Inamoto T, Yagi M, Ueno M, Kato H, Takeuchi M, Miyatake S, Tabata Y, Yamaoka Y. Efficient proliferation and adipose differentiation of human adipose tissue-derived vascular stromal cells transfected with basic fibroblast growth factor gene.  Tissue Eng. 2003;  9 881-892
  • 58 Zisch A H, Lutolf M P, Hubbell J A. Biopolymeric delivery matrices for angiogenic growth factors.  Cardiovasc Pathol. 2003;  12 295-310
  • 59 Zuk P A, Zhu M, Ashjian P, De Ugarte D A, Huang J I, Mizuno H, Alfonso Z C, Fraser J K, Benhaim P, Hedrick M H. Human adipose tissue is a source of multipotent stem cells.  Mol Biol Cell. 2002;  13 4279-4295

Prof. Dr. med. Hans-Günther Machens

Klinik für Plastische und Handchirurgie - Zentrum für Schwerbrandverletzte
Universitätsklinikum Schleswig-Holstein
Campus Lübeck

Ratzeburger Allee 160

23538 Lübeck

Email: Machens@uni-luebeck.de

    >