Exp Clin Endocrinol Diabetes 2005; 113(10): 573-576
DOI: 10.1055/s-2005-872894
Article

J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Early Loss of Arteriolar Smooth Muscle Cells: More Than Just a Pericyte Loss in Diabetic Retinopathy

F. vom Hagen1 , Y. Feng1 , A. Hillenbrand1 , S. Hoffmann2 , M. Shani4 , U. Deutsch3 , H. P. Hammes1
  • 15th Medical Clinic, Faculty of Medicine Mannheim, University of Heidelberg, Germany
  • 2Medical Research Center, Faculty of Medicine Mannheim, University of Heidelberg, Germany
  • 3Theodor Kocher Institute, University of Berne, Berne, Switzerland
  • 4Institute of Animal Science, Volcani Center, Bet Dagan, Israel
Further Information

Publication History

Received: November 12, 2004 First decision: January 5, 2005

Accepted: September 2, 2005

Publication Date:
30 November 2005 (online)

Abstract

Incipient diabetic retinopathy is characterized by increased capillary permeability and progressive capillary occlusion. The earliest structural change is the loss of pericytes (PC) from the retinal capillaries. With the availability of the XLacZ mouse, which expresses the LacZ reporter in a PC/vascular smooth muscle cell (vSMC) specific fashion, we quantitatively assessed the temporal dynamics of smooth muscle cells in arterioles under hyperglycemic conditions. We induced stable hyperglycemia in XLacZ mice. After 4, 8, and 12 weeks of diabetes retinae were isolated and β-galctosidase/lectin stained. The numbers of smooth muscle cells were counted in retinal whole mounts, and diameters of retinal radial and branching arterioles and venules were analyzed at different distances apart from the center of the retina. After eight weeks of diabetes, the numbers of vSMCs were significantly reduced in radial arterioles 1000 μm distant from the optic disc. At proximal sites of branching arterioles (400 µm distant from the center), and at distal sites (1000 µm), vSMC were significantly reduced already after 4 weeks (to a maximum of 31 %). These changes were not associated with any measurable variation in vessel diameters. These data indicate quantitatively that hyperglycemia not only causes pericyte loss, but also loss of vSMCs in the retinal vasculature. Our data suggest that arteriolar vSMC in the eye underlie similar regulations which induce early pericyte loss in the diabetic retina.

References

  • 1 Allt G, Lawrenson J G. Pericytes: cell biology and pathology.  Cells Tissues Organs. 2001;  169 1-11
  • 2 Bondjers C, Kalen M, Hellstrom M, Scheidl S J, Abramsson A, Renner O, Lindahl P, Cho H, Kehrl J, Betsholtz C. Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells.  Am J Pathol. 2003;  162 721-729
  • 3 Cogan D, Toussaint D, and Kuwabara T. Retinal vascular pattern. IV. Diabetic retinopathy.  Arch Ophthalmol. 1961;  66 366-378
  • 4 Cox T, Simpson D A, Stitt A W, Gardiner T A. Sources of PDGF expression in murine retina and the effect of short-term diabetes.  Mol Vis. 2003;  10 665-672
  • 5 Engerman R L, Kern T S. Hyperglycemia as a cause of diabetic retinopathy.  Metabolism. 1986;  35 (Suppl 1) 20-23
  • 6 Fiedler U, Krissl T, Koidl S, Weiss C, Koblizek T, Deutsch U, Martiny-Baron G, Marme D, Augustin H. Angiopoietin-1 and angiopoietin-2 share the same binding domains in the Tie2 receptor involving the first Ig like loop and the epidermal growth-like repeats.  JBC. 2003;  278 1721-1727
  • 7 Frank R N. Diabetic retinopathy.  N Engl J Med. 2004;  350 48-58
  • 8 Gardiner T A, Stitt A W, Anderson H R, Archer D B. Selective loss of vascular smooth muscle cells in the retinal microcirculation of diabetic dogs.  Br J Ophthalmol. 1994;  78 54-60
  • 9 Graier W F, Grubenthal I, Dittrich P, Wascher T C, Kostner G M. Intracellular mechanism of high d-glucose-induced modulation of vascular cell proliferation.  Eur J Pharmacol. 1995;  294 221-229
  • 10 Hammes H P, Lin J, Wagner P, Feng Y, vom Hagen F, Krzizok T, Renner O, Breier G, Brownlee M, Deutsch U. Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy.  Diabetes. 2004;  53 1104-1110
  • 11 Hammes H P, Lin J, Renner O, Shani M, Lundqvist A, Betsholtz C, Brownlee M, Deutsch U. Pericytes and the pathogenesis of diabetic retinopathy.  Diabetes. 2002;  51 3107-3112
  • 12 Hammes H P, Martin S, Federlin K, Geisen K, Brownlee M. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy.  Proc Natl Acad Sci. 1991;  88 11555-11558
  • 13 Hughes S, Chan-Ling T. Characterization of smooth muscle cell and pericyte differentiation in the rat retina in vivo.  IOVS. 2004;  45 2795-2806
  • 14 Israely T, Dafni H, Granot D, Nevo N, Tsafriri A, Neeman M. Vascular remodeling and angiogenesis in ectopic ovarian transplants: a crucial role of pericytes and vascular smooth muscle cells in maintenance of ovarian grafts.  Biol Reprod. 2003;  68 2055-2064
  • 15 Kelley C, D'Amore P, Hechtman H B, Shepro D. Microvascular pericyte contractility in vitro: Comparison with other cells of the vascular wall.  J Cell Biol. 1987;  104 483-490
  • 16 Matsumara T, Hammes H P, Thornalley P, Edelstein D, Brownlee M. Hyperglycemia increases angiopoietin-2 expression in retinal Mueller cells through superoxide induced overproduction of a-oxoaldehyde AGE precursors.  Diabetes. 2000;  49 (Suppl 1) A55
  • 17 Orlidge A, D'Amore P. Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells.  J Cell Biol. 1987;  105 1455-1462
  • 18 Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s.  Nature. 1993;  362 801-809
  • 19 Seki N, Hashimoto N, Sano H, Horiuchi S, Yagui K, Makino H, Saito S. Mechanisms involved in the stimulatory effect of advanced glycation end products on growth of rat aortic smooth muscle cells.  Metabolism. 2003;  52 1558-1563
  • 20 Sims D E. The pericyte - a review.  Tissue Cell. 1986;  18 153-174
  • 21 Stitt A W, Hughes S J, Canning P, Lynch O, Cox O, Frizzell N, Thorpe S R, Cotter T G, Curtis T M, Gardiner T A. Substrates modified by advanced glycation end-products cause dysfunction and death in retinal pericytes by reducing survival signals mediated by platelet-derived growth factor.  Diabetologia. 2004;  47 1735-1746
  • 22 Tallquist M D, French W J, Soriano P. Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development.  PloS Biol. 2003;  1 288-299
  • 23 Tidhar A, Reichenstein M, Cohen D, Faerman A, Copeland N G, Gilbert D J, Jenkins N A, Shani M. A novel transgenic marker for migrating limb muscle precursors and for vascular smooth muscle cells.  Dev Dyn. 2001;  220 60-73
  • 24 Van Gieson E J, Murfee W L, Skalak T C, Price R J. Enhanced smooth muscle cell coverage of microvessels exposed to increased hemodynamic stresses in vivo.  Circ Res. 2003;  92 929-936

Franziska vom Hagen

V. Medical Clinic
Faculty of Medicine Mannheim
University of Heidelberg

Theodor-Kutzer-Ufer

68167 Mannheim

Germany

Phone: + 49(0)6213832942

Fax: + 49 (0) 62 13 83 38 04

Email: Franziska.vomhagen@med5.ma.uni-heidelberg.de

    >