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Introduction

The hydrogen bonded urea–hydrogen peroxide complex
[CO(NH2)2·H2O2, UHP] is a cheap and commercially avail-
able white crystalline solid (mp 84–86 °C, dec.) obtained by
recrystallization of urea from commercially available 33%
aqueous hydrogen peroxide.1

Its stability at room temperature, high hydrogen peroxide
content (36.2%) and the potential for releasing it in a con-
trolled manner,2 as well as its solubility in organic solvents
(alcohols, dichloromethane) makes it a good and safe sub-

stitute for anhydrous hydrogen peroxide (not available any-
more) in most oxidation reactions.

UHP has been used for the epoxidation of a wide range of
alkenes.3 It is capable of oxidizing a number of functional
groups: nitriles to amides,4 oximes to nitroalkanes,5 sulfides
to sulfoxides6 or sulfones,7 aldehydes to acids,8 etc. UHP has
also been found useful for heteroatom oxidation reactions,9

as well as to carry out Baeyer–Villiger10 and related reac-
tions. In recent years, UHP has proved to be effective in solid
state reactions, both under heating11 or microwave irradia-
tion,12 so becoming an interesting eco-friendly reagent.

Abstracts

(A) In the presence of anhydrides, alkenes are epoxidized with UHP
through the in situ formation of peroxycarboxylic acids.3 A large ex-
cess of UHP has to be used to avoid the build-up of high concentrations
of diacyl peroxides.
Phthalic anhydride supported on insoluble polystyrene-divinyl-
benzene (PS-DVB) and UHP allows the epoxidation of different
alkenes in an efficient method where purification was limited to filtra-
tion, solvent change and evaporation.13

(B) Epoxidation of a,b-unsaturated ketones with UHP requires the
presence of a base.3a,b Quinones could also be epoxidized combining
UHP and a base, using alcohols or dichloromethane as the solvent
system.14 Asymmetric epoxidation of a,b-unsaturated aldehydes has
been achieved with excellent yields and enantioselectivities.3c

(C) Regioselective epoxidation of monoterpenes in the liquid phase
using titanosilicates TS-1 and TiAlb combined with UHP as an oxidant
has been achieved.15 Epoxidation occurrs exclusively at the more elec-
tron-rich bond. Hutchings et al.16 have also studied the influence of the
hydroxy group in the regioselectivity of the epoxidation in linalool,
geraniol and citronellol.

(D) Methyl trioxorhenium (MTO) has proved an efficient catalyst for
regio- and stereospecific epoxidation of different substrates17 both in
room temperature ionic liquids (based on N,N¢-dialkylimidazolium or
N-alkylpyridinium cations)18 and in non-protic solvents such as
dichloromethane.19 Diethyl ether as solvent and pyridine as the ligand
gives the optimal results for epoxidation of cholesterol.20 a-Hydroxy
and a-siloxy esters are obtained from methyl trimethylsilyl ketene
acetals through the corresponding epoxide under similar conditions.21
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(E) Exo epoxidation of norbornene has been carried out over vanadium
substituted phosphomolybdic acid catalysts with H2O2, UHP or TBHP.
UHP shows similar conversion rates as H2O2, but better selectivities
(97% of the epoxide achieved) due to the slow and controlled release
of hydrogen peroxide and the less acidic character of the reaction
medium.22

(F) Aromatic aldehydes are oxidized to the corresponding benzoic
acids in good to excellent yields.8

(G) The oxidation of sulfide to sulfoxide has been achieved using rhe-
nium catalysts in non-aqueous media. Triphenylphosphine ligands in
the catalyst proved to be effective to stop the reaction at the sulfoxide
stage in good yields.6 Using MTO-UHP the reaction proceeds further
to the sulfone stage. A combination of UHP and trifluoroacetic anhy-
dride in acetonitrile affords the sulfone in excellent yields.7

Solvent free oxidation of sulfides with UHP and tetrabutylammonium
phosphomolybdate catalyst on fluorapatite was achieved at 4–25 °C
giving the corresponding sulfoxides or sulfones selectively by control-
ling the amount of UHP employed.23

(H) The oxidation of unactivated C–H bonds with UHP has been re-
ported. In the presence of catalytic amounts of a vanadium salt
(Bu4NVO3) and pyrazine-2-carboxylic acid in acetonitrile, the hydro-
peroxide of cyclohexane was formed.24 Substituted toluenes were se-
lectively oxidized to aldehydes with UHP in the presence of cobalt(II)
acetate, acetic acid and an inorganic bromide source.25 Oxidation of
cyclohexane with UHP in TFA gave the cyclohexyl trifluoroacetate in
good yield.26

(I) Oxidative halogenation of arenes with UHP and iodine in ethyl
acetate has been reported.27

Skulski et al. have also described an efficient solid state chlorination
of iodoarenes with UHP affording dichloroiodoarenes in 64–98%
yields after 15 minutes at 85 °C.28
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