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I ntroduction

Magnesium  bis(monoperoxyphthalate) hexahydratred solutions, thus the range of functional groups that
(MMPP) is a commercially available, inexpensive, antblerates the reaction conditions is increased.

relatively stable reagent suitable for the oxidation of e most evident disadvantage of the reagent is also relat-
variety of organic substrates. It is easy and safe to handl§ .t jts solubility: since it is a salt, it has low solubility in
even in large-scale reactions. MMPP has been used for {hg o5t common non-polar solvents. Recently, however,
oxidation under mild conditions of a wide range of comMgq se of a solid-phase-supported version of the reagent

pounds including alkenes, ketones, sulfides, sulfoxidesy silica gel has been successfully applied to overcome
hydrazones and hydrazides, and is thus one of the mgst |imitation in some particular cases.

attractive peroxyacids for this type of reaction.

Besides stability and safety advantages, there are ac
tional practical aspects to this reagent: (1) since it is wate oo

soluble, excess MMPP or the resulting magnesium bis(p o Mg?"-6Hz0
thalate) can be removed from the reaction mixture by ©

simple aqueous work-up; and (2) it can be used in buf o )

Abstracts

(A) Oxidation of sulfides to sulfoxides:

Sulfides are cleanly transformed into the corresponding sulfoxic ~ 0Ac_-OAc ) oAc OAC

in good yields when MMPP (1 equiv) is used as oxidant. The yiel MMPP (1 equiv) 9
using this reagent are bette_r thhns_e obtained using typical oxi- Aco S\p_tol CH,Cl, ACO N
dants such as oxone or sodium periodate. Moreover, no overox OAC p-tol
tion to the sulfone is observed when the correct stoichiometry 12 examples, 80—-93% yield OAe
used?

(B) Oxidation of sulfides to sulfones: 0

Alternatively, when an excess of MMPP (2 equiv) is used in tIPh/S MMPP (2 equiv) P
oxidation of sulfides, the corresponding sulfones are formed @ ———~ Pn @
good yiedlss N[ Ve meoHoc U pJ.

3 examples, 86-98% yield
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(C) Oxidation of isothiazolium salts to sultams: Me Me
The ultrasound-stimulated oxidation of isothiazolium salts wit A\
N_IMPF_’ |n8|§tOH or HO affords 3-alkoxy or 3-hydroxysultams in 57N e MMPP 048\ N e
high yields: ® N=— ultrasound H
~ H,0, R'OH OR'
ClO4
R 12 examples, 68—98% yield R

(D) Epoxidation of alkenes:

MMPP is also used as the oxygen source for the epoxidation
linear or cyclic olefins, using pernitrated porphyrin ligands fc© Mn(llT) or Fe(lll) metalloporphirines OO

transition-metal catalysts. Mn(lll) derivatives are preferred met: MMPP
loporphyrins for the epoxidation of linear olefins, while Mn(lll) ot
Fe(lll) derivatives are the reagents of choice for cyclic oléfins.

(E) Transformation of aromatic aldehydes to phenals: o) H
Most aromatic aldehydes are oxidized to the corresponding c oH
boxylic acids. However, it was recently reported thrého- and (O MMPP O.
para-methoxybenzaldehydes are transformed to the analogt Me MeOH Me
phenols using MMPP as the oxidant.
(F) Oxidative conversion of aldehyde N,N-dialkyl hydrazones to
nitriles: O\ﬁOMe O\\<OMQ
The transformation of aldehydé&N-dialkylhydrazones into ni- ’T‘ Et N Et
triles has been accomplished using different procedures, but th N Et ;11 Et R. _CN
conditions required are often harsh, like hyperbasic or strongly i MMPP, MEOH - - }f
oxidative media. The use of MMR#lows this transformation in ¢ oBn 0T, 5min [ OBn BnG CFs
high yield, even for densely functionalized hydrazones containin ~ CFs CF3
for example, protected carbohydrate moieties. .
6 examples, 83-93% yield
(G) Oxidative cleavage of ketone N,N-dialkyl hydrazones to ketones:
When ketoneN,N-dialkylhydrazones are used as substrates f O\/OMQ on o
the above reaction, ketones are obtained instead of nitriles. - ’T‘ MMPP. MeOH ;/[
reaction is again high yielding and chemoselective, and proce ph_ __N MMPR, Ve
without racemizatiofi. \I 0C,1h ™~ Me
Me 10 examples, 76-94% yield
(H) Oxidative deamination of tertiary hydrazides: Me.,
The N-N bond cleavage of tertiary hydrazides by MMPP -
applied to the deamination of substrates sudit-disilkylaminop- 0 N MMPP (6 equiv)
lactams under mild conditions. This methodology is not only & N Me a NH
efficient solution where other deprotecting methodologies fail, b MeOH
appears to be the only procedure suitable for substrates that cBn© Bno
functionalities sensitive to reductive conditidhs. 9 examples, 80-92% yield
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