Synlett 2005(10): 1586-1590  
DOI: 10.1055/s-2005-869869
LETTER
© Georg Thieme Verlag Stuttgart · New York

Electrophilic Fluorination of 5-(Cyanomethyl)imidazole-4-carboxylate Nucleosides: Facile Entry to 3-Fluoro-3-deazaguanosine Analogues

Kandasamy Sakthivel*, P. Dan Cook
Biota Inc, 2232 Rutherford Rd, Carlsbad, CA, 92008, USA
Fax: +1(858)6252433; e-Mail: sakvel@hotmail.com;
Further Information

Publication History

Received 28 March 2005
Publication Date:
07 June 2005 (online)

Abstract

A facile and efficient methodology is described for the synthesis of 3-fluoro-3-deazaguanosines based on a novel electrophilic fluorination of 5-(cyanomethyl)imidazole-4-carboxylate nucleosides. This general methodology can be readily applied to the synthesis of sugar-modified 3-fluoro-3-deazaguanosine analogues.

    References

  • 2a Welch T. Eswarakrishnan S. Fluorine in Bioorganic Chemistry   Wiley-Interscience; New York: 1991. and references cited therein
  • 2b Mikami K. Itoh Y. Yamanaka M. Chem. Rev.  2004,  104:  1 
  • 3a Park BK. Kitteringham NR. O’Neill PM. Annu. Rev. Pharmacol. Toxicol.  2001,  41:  443 
  • 3b Man H. Corral LG. Stirrling DI. Muller GW. Bioorg. Med. Chem. Lett.  2003,  13:  3415 
  • 4a

    FDA-Approved drugs based upon fluorinated nucleosides include 5F-3TC (AIDS) and Gemcitabine(cancer).

  • 4b Eldrup AB. Prhavc M. Brooks J. Bhat B. Prakash TP. Song Q. Bera S. Bhat N. Dande P. Cook PD. Bennet CF. Carrol SS. Ball RG. Bosserman M. Burlein C. Colwell LF. Fay JF. Flores OA. Getty K. LaFamina RL. Leone J. MacCoss M. McMasters DR. Tomassini JE. Langen DV. Wolanski B. Olseon DB. J. Med. Chem.  2004,  47:  5284 
  • 4c Zhou W. Gumina G. Chong Y. Wang J. Schinazi RF. Chu CK. J. Med. Chem.  2004,  47:  3399 
  • 4d Yang Y.-Y. Meng W.-D. Qing F.-L. Org. Lett.  2004,  6:  4257 
  • 5a Kool ET. Acc. Chem. Res.  2002,  35:  936 ; and references cited therein
  • 5b Dai Q. Piccirilli JA. Org. Lett.  2003,  5:  807 
  • 5c Lai JS. Kool ET. J. Am. Chem. Soc.  2004,  126:  3040 
  • 5d Robins MJ. MacCoss M. Naik SR. Ramani G. J. Am. Chem. Soc.  1976,  98:  7381 
  • 5e Blackburn GM. Brown D. Martin SJ. Parratt MJ. J. Chem. Soc., Perkin Trans. 1  1987,  181 
  • 6 Kawasaki AM. Casper MD. Freier SM. Lesnik EA. Zounes MC. Cummins LL. Gonzalez C. Cook PD. J. Med. Chem.  1993,  36:  831 
  • 7a Layzer JM. Mccaffrey AP. Tanner AK. Huang Z. Kay MA. Sullenger BA. RNA  2004,  10:  766 
  • 7b Allerson CR. Sioufi N. Jarres R. Prakash TP. Naik N. Berdeja A. Wanders L. Griffey RH. Swayze EE. Bhat B. J. Med. Chem.  2005,  48:  901 
  • 8a Cook PD. Allen LB. Streeter DG. Huffman JH. Sidwell RW. Robins RK. J. Med. Chem.  1978,  21:  1212 
  • 8b Allen LB. Huffman JH. Cook PD. Meyer RB. Robins RK. Sidwell RW. Antimicrob. Agents Chemother.  1977,  12:  114 
  • 8c Saunder PP. Chao LY. Loo TL. Robins RK. Biochem. Pharmacol.  1981,  30:  2374 
  • 8d Revangar GR. Gupta PK. Adams AD. Dalley NK. McKernana PA. Cook PD. Canonico PG. Robins RK. J. Med. Chem.  1984,  27:  1389 
  • 9 Kumar A. Khan SI. Manglani A. Khan ZK. Katti SB. Nucleosides Nucleotides  1994,  13:  1049 ; and references cited therein
  • 10a Eldrup AB. Allerson CR. Bennet CF. Bera S. Bhat B. Bosserman M. Brooks J. Burlein C. Carrol SS. Cook PD. Getty KL. MacCoss M. McMasters DR. Olseon DB. Prakash TP. Prhavc M. Song Q. Tomassini JE. Xia J. J. Med. Chem.  2004,  47:  2283 
  • 10b Shim J. Larson G. Lai V. Naim S. Wu JZ. Antiviral Res.  2003,  58:  243 
  • 10c Ismaili H, Moulay A, Cheng Y, Lavalle J, Siddiqui A, and Storrer R. inventors; Intl. Patent. Appl. WO  01/60315. 
  • 10d Sommadossi JP, and Lacolla P. inventors; Intl. Patent Appl. WO  01/92282. 
  • 11 Minakawa N. Kojima N. Matsuda A. J. Org. Chem.  1999,  64:  7158 
  • 12 However, synthesis and biological properties of 2,3-difluoro-3-deaza-Ad, 3-F-3-deaza-Ad, 3-Br-3-deaza-G and 3-Cl-3-deaza-G were reported. See: Liu MC. Luo MZ. Mozdziesz DE. Lin TS. Dutschman GE. Gullen EA. Cheng YC. Sartorelli AC. Nucleosides, Nucleotides Nucleic Acids  2001,  20:  1975 
  • 13 Minakawa N. Sasabuchi Y. Kiyosue A. Kojima N. Matsuda A. Chem. Pharm. Bull.  1996,  44:  288 
  • 14 Robins RK. Horner JK. Greco CV. Noell CW. Beames CG. J. Org. Chem.  1963,  28:  3041 
  • 15a Cook PD. Rousseau RJ. Mian AM. Meyer RB. Dea P. Ivanovics G. Streeter DG. Witkowski JT. Stout MG. Simon LN. Sidwell RW. Robins RK. J. Am. Chem. Soc.  1975,  97:  2916 
  • 15b Carrol SS, LaFemina RL, Hall DL, Himmelberger AL, Kuo LC, MacCoss M, Olseon DB, Rutkowski CA, Tomassini JE, An H, Bhat B, Bhat N, Cook PD, Eldrup AB, Guinosso CJ, Prhavc M, and Prakash TP. inventors; Intl. Patent. Appl. WO  02/057425. 
  • 16a Harry-O’kuru RE. Smith JM. Wolfe MS. J. Org. Chem.  1997,  62:  1754 
  • 16b Franchetti P. Cappellacci L. Marchetti S. Trincavelli L. Martini C. Mazzoni MR. Lucacchini A. Grifantini M. J. Med. Chem.  1998,  41:  1708 
  • 17 Niedballa U. Vorbrüggen HJ. J. Org. Chem.  1974,  39:  3654 
  • 18 Acevedo OL. Andrews RS. Cook PD. Nucleosides Nucleotides  1993,  12:  403 
  • 20a Cook PD. Rousseau RJ. Mian AM. Dea P. Meyar RB. Robins RK. J. Am. Chem. Soc.  1976,  98:  1492 
  • 20b Tanaka H. Hirayama M. Suzuki M. Miyasaka T. Matsuda A. Ueda T. Tetrahedron  1986,  42:  1971 
  • 21a Cook PD. Robins RK. J. Org. Chem.  1978,  43:  289 
  • 21b Revankar GR. Gupta PK. Adams AD. Dalley NK. McKernana PA. Cook PD. Canonico PG. Robins RK. J. Med. Chem.  1984,  27:  1389 
1

New address: 5655 Greenshade Rd, San Diego, CA 92121, USA. Email: sakthi123@earthlink.net.

19

Compound 5a (diastereomers 1:1): 1H NMR (300 MHz, CDCl3): δ = 3.92 (s, 3 H, OCH3), 4.66-4.90 (m, 3 H, 4′, 5′,5′′-H), 5.90-6.06 (m, 2 H, 2′,3′-H), 6.48 (d, J = 6.7 Hz, 1 H, 1′-H), 7.31-7.63 (m, 10 H, 9 Ar-H, Imi-2-H), 7.92-8.14 (m, 7 H, 6 × Ar-H, CHFCN). 19F NMR (282 MHz, CDCl3): δ (diastreomers) = -175.76 (d, J F-H = 43.6 Hz), -172.72 (d, J F-H = 43.6 Hz). HRMS: m/z calcd for C33H26FN3O9 [MNa+]: 650.1551; found: 650.1550. ESI-MS: m/z = 650 [MNa+].
Compound 5b (diastereomers 1:1): 1H NMR (300 MHz, CDCl3): δ = 2.15 (s, 3 H, COCH3), 2.20-2.50 (m, 5 H, 3′,3′′-H, Tol-CH3), 3.94 (s, 3 H, OCH3), 4.53-4.75 (m, 3 H, 4′, 5′,5′′-H), 5.40-5.46 (m, 1 H, 2′-H), 6.13-6.16 (m, 1 H, 1′-H), 7.25 (m, 2 H, Ar-H), 7.41 (d, 1 H, J = 43.1 Hz, CHFCN), 7.86-7.98 (m, 3 H, 2 × Ar-H, Imi-2-H). 19F NMR (282 MHz, CDCl3): δ (diastreomers) = -176.41 (d, J F-H = 43.6 Hz),
-174.03 (d, J F-H = 43.6 Hz). HRMS: m/z calcd for C22H22FN3O7 [MNa+]: 482.1334; found: 482.1333. ESI-MS: m/z = 482 [MNa+].
Compound 5c (diastereomers 1:1): 1H NMR (300 MHz, CDCl3): δ = 1.58 (2 × s, 3 H, CH3), 3.98 (2 × s, 3 H, OCH3), 4.78-4.96 (m, 3 H, 4′, 5′,5′′-H), 5.75 (2 × d, 1 H, 3′-H), 6.66 and 6.80 (2 × s, 1 H, 1′-H), 7.26-7.62 (m, 10 H, 9 × Ar-H, Imi-2-H), 7.80-8.19 and 8.20 (m, 7 H, 6 × Ar-H, CHFCN). 19F NMR (282 MHz, CDCl3): δ (diastereomers) = -179.31 (d, J F-H = 41.6 Hz), -170.0 (d, J F-H = 41.6 Hz). HRMS: m/z calcd for C34H28FN3O9 [MNa+]: 664.1707; found: 664.1704. ESI-MS: m/z = 664 [MNa+].

22

Compound 12a (diastereomers 1:3): 1H NMR (300 MHz, DMSO-d 6): δ = 3.45-3.70 (m, 5 H, 2′, 3′-H, OCH3), 3.85-3.86 (m, 1 H, 4′-H), 4.04-4.16 (m, 2 H, 5′,5′′-H), 5.08-5.22 (m, 2 H, 3′, 5′′-OH), 5.40 and 5.49 (2 × d, J = 4.1, 4.7 Hz, 1 H, 2′-OH), 5.51 (d, J = 5.56 Hz, 1 H, 1′-H), 7.17 (d, J H-F = 44.8 Hz, 0.3 H, CHF), 7.22 (d, J H-F = 44.8 Hz, 0.7 H, CHF), 7.40 and 7.60 (2 × br s, 2 H, NH2), 8.21 and 8.24 (2 × br s, 1 H, Imi-2H), 8.50 (br s, 1 H, NH). 19F NMR (282 MHz, CDCl3): δ (diastereomers) = -176.84 (d, J F-H = 43.6 Hz),
-173.84 (d, J F-H = 43.6 Hz). HRMS: m/z calcd for C12H17FN4O6 [MNa+] = 355.1030; found: 355.1034. ESI-MS: m/z = 355 [MNa+].

23

To our surprise, 5-imidomethoxy imidazole-4-carboxamide riboside analogues similar to 12a have never been detected, or proposed to form, during the cyclization reactions of 4a or 10a in basic alcoholic solutions. See ref. 11 and ref. 20.

24

A similar ring-closure was also effected successfully when using 5% Na2CO3 in EtOH, but, because of its high polarity, we had difficulties in isolating the product from the inorganic salt. Although the ring-closure reaction could also be realized using several organic amine bases (DBU, pyridine, N,N-diisopropylethylamine, etc.), we prefer to use less volatile Et3N base.

25

Although the conversions of the ring-closure reactions were >80%, the high polarities of products 3a-c restricted their isolated yields to only 60-68%.

26

Compound 3b: UV (0.5 N NaOH): λmax = 287 nm (ε 9400). 1H NMR (300 MHz, DMSO-d 6): δ = 1.80-1.88 (m, 1 H, 3′-H), 2.08-2.18 (m, 1 H, 3′′-H), 3.51-3.55 (m, 1 H, 5′-H), 3.64-3.67 (m, 1 H, 5′′-H), 4.28-4.42 (m, 2 H, 4′-H, 2′-OH), 5.01 (t, 1 H, J = 5.3 Hz, 5′-OH), 5.52 (br s, 2 H, NH2), 5.61 (d, J = 4.4 Hz, 1 H, 2′-H), 5.78 (s, 1 H, 1′-H), 8.04 (s, 1 H, 2-H), 10.44 (br s, 1 H, NH). 19F NMR (282 MHz, DMSO-d 6): δ = -186.70. 13C NMR (75 MHz, DMSO-d 6): δ = 34.6, 62.9, 76.4, 81.7, 93.1 (d, J = 5.5 Hz), 122.2 (d, J = 215.0 Hz), 123.2, 132.1 (d, J = 9.0 Hz), 135.9 (d, J = 22.0 Hz), 137.6, 155.0. HRMS: m/z calcd for C11H14FN4O4 [MH+] = 285.0999; found: 285.0991; [MNa+]: 307.0819; found: 307.0809. ESI-MS: m/z = 285 [MH+].
Compound 3c: UV (H2O): λmax = 272 nm (ε 8200), 310 nm (ε 7100). 1H NMR (300 MHz, DMSO-d 6): δ = 0.71 (s, 3 H, CH3), 3.62-3.69 (m, 1 H, 5′-H), 3.82-3.93 (m, 3 H, 3′,4′,5′′-H), 5.15 (s, 1 H, 2′-OH), 5.21-5.27 (m, 2 H, 3′,5′-OH), 5.54 (br s, 2 H, NH2), 5.77 (s, 1 H, 1′-H), 8.24 (s, 1 H, 2-H), 10.46 (br s, 1 H, NH). 19F NMR (282 MHz, DMSO-d 6): δ =
-186.46. 13C NMR (75 MHz, DMSO-d 6): δ = 20.5, 59.7, 71.7, 79.5, 83.0, 93.3 (d, J = 7 Hz), 122.2 (d, J = 214 Hz), 122.9, 132.2 (d, J = 9 Hz), 135.9 (d, J = 22 Hz), 137.5, 155.0. HRMS: m/z calcd for C12H16FN4O5 [MH+]: 315.1105; found: 315.1102; [MNa+]: 337.0924; found: 337.0920. ESI-MS: m/z = 315 [MH+].