Synlett 2005(9): 1477-1479  
DOI: 10.1055/s-2005-869832
LETTER
© Georg Thieme Verlag Stuttgart · New York

An Expeditious Synthesis of Nocardiolactone

Ya-Ping Sun, Yikang Wu*
State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China
Fax: +86(21)64166128; e-Mail: yikangwu@mail.sioc.ac.cn;
Further Information

Publication History

Received 29 March 2005
Publication Date:
04 May 2005 (online)

Abstract

Nocardiolactone was synthesized by using a Crimmins asymmetric aldolization followed by a DMAP-mediated removal of the auxiliary with concurrent protection of the carboxylic group as a benzyl ester, activation of the β-hydroxyl group as a mesylate, ­hydrogenolysis of the benzyl ester, and a novel DBU-mediated ­lactonization that converted the syn-configuration to the trans one.

    References

  • 1 Mikami Y. Yazawa Y. Tanaka Y. Ritzau M. Grafe U. Nat. Prod. Lett.  1999,  13:  277 
  • 2a Weibel EK. Hadvary P. Hochuli E. Kupfer E. Lengsfeld H. J. Antibiot.  1987,  40:  1081 
  • 2b Hochuli E. Kupfer E. Maurer R. Mwister W. Mercadal Y. Schmidt K. J. Antibiot.  1987,  40:  1086 
  • 2c Kondo S. Uotani K. Miyamoto M. Hazato T. Naganawa H. Aoyagi T. Umezawa H. J. Antibiot.  1978,  31:  797 
  • 2d Mutoh M. Nakada N. Matsukuma S. Ohshima S. Yoshinari K. Watanabe J. Arisawa M. J. Antibiot.  1994,  47:  1369 
  • 2e Yoshinari K. Aoki M. Ohtsuka T. Nakayama N. Itezono Y. Mutoh M. Watanabe J. Yokose K. J. Antibiot.  1994,  47:  1376 
  • 2f Umezawa H. Aoyagi T. Uotani K. Hamada M. Takeuchi T. Takahashi S. J. Antibiot.  1980,  33:  1594 
  • 2g Uotani K. Naganawa H. Kondo S. Aoyagi T. Umezawa H. J. Antibiot.  1982,  35:  1495 
  • 2h Aldridge DC. Gile D. Turner WB. J. Chem. Soc. C  1971,  3888 
  • 2i Greenspan MD. Yudkovitz JB. Lo CYL. Chen JS. Alberts AW. Hunt VM. Chang MN. Yang SS. Thompson KL. Chiang Y.-CP. Chabala JC. Monaghan RL. Schwartz RL. Proc. Natl. Acad. Sci. U.S.A.  1987,  84:  7488 
  • 2j Tomoda H. Kumagai H. Tanaka H. Omura S. Biochim. Biophys. Acta  1987,  922:  351 
  • 2k Tomoda H. Kumagai H. Takahashi Y. Tanaka Y. Iwai Y. Omura S. J. Antibiot.  1988,  41:  247 
  • 2l Omura S. Tomoda H. Kumagai H. Greenspan MD. Yodkovits JB. Chen JS. Albert AW. Martin I. Mochales S. Monaghan RL. Chabala JC. Schwartz RE. Patchett AA. J. Antibiot.  1987,  40:  1356 
  • 3a Crimmins MT. King BW. Tabet EA. J. Am. Chem. Soc.  1997,  119:  7883 
  • 3b Crimmins MT. Chaudhary K. Org. Lett.  2000,  2:  775 
  • 3c Crimmins MT. King BW. Tabet EA. Chaudhary K. J. Org. Chem.  2001,  66:  894 
  • 4 Mulzer J. Bruntrup G. Chucholowski A. Angew. Chem., Int. Ed. Engl.  1979,  18:  622 
  • 5 Adams W. Baeza J. Liu J.-C. J. Am. Chem. Soc.  1972,  94:  2000 
  • See, e.g.:
  • 6a Zhang Y. Gross RA. Lenz RW. Macromolecules  1990,  23:  3206 
  • 6b Bernabei I. Castagnani R. De Angelis F. De Fusco E. Giannessi F. Misiti D. Muck S. Scafetta N. Tinti MO. Chem.-Eur. J.  1996,  2:  826 
  • 6c De Angelis F. De Fusco E. Desiderio P. Giannessi F. Piccirilli F. Tinti MO. Eur. J. Org. Chem.  1999,  2705 
  • 6d For a prototype of ring-closure conditions (with Br as the leaving group instead of OMs), see: Sato T. Kawara T. Nishizawa A. Fujisawa T. Tetrahedron Lett.  1980,  21:  3377 
  • 7a Wu Y.-K. Sun Y.-P. Yang Y.-Q. Hu Q. Zhang Q. J. Org. Chem.  2004,  69:  6141 
  • 7b

    For related precedents see: ref. [3] above.

  • 7c Su D.-W. Wang Y.-C. Yan T.-H. Tetrahedron Lett.  1999,  40:  4197 
  • 8 Delaunay D. Toupet L. Le Corre M. J. Org. Chem.  1995,  60:  6604 
  • 9 Weinbach SP. Jacquemain D. Leveiller F. Kjaer K. Als-Nielsen J. Leiserowitz L. J. Am. Chem. Soc.  1993,  115:  11110 
  • 10 Ho G.-J. Mathre DJ. J. Org. Chem.  1995,  60:  2271 
  • 11 Toshima H. Maru K. Saito M. Ichihara A. Tetrahedron  1999,  55:  5793 
  • 12a Wu Y.-K. Sun Y.-P. Chem. Commun.  2005,  1906 
  • 12b

    The dianion technique was unfortunately not applicable to the nocadiolactone synthesis, because the corresponding β-OH acid was resisting to the tosylation (presumably as a consequence of its insolubility in THF).

  • 13a Jiang X.-K. Acc. Chem. Res.  1988,  21:  362 
  • 13b Jiang X.-K. Hui Y.-Z. Fan WQ. J. Am. Chem. Soc.  1984,  106:  3839 
  • See, e. g.:
  • 16a Grovenstein JE. Lee DE. J. Am. Chem. Soc.  1953,  75:  2639 
  • 16b Cristol SJ. Norris WP. J. Am. Chem. Soc.  1953,  75:  2645 
  • 16c Paquette LA. Fristad WE. Dime DS. Bailey TR. J. Org. Chem.  1980,  45:  3017 
  • 16d Murahashi S. Naota T. Tanigawa Y. Org. Synth., Coll. Vol. VII   Wiley and Sons; New York: 1990.  p.172 
  • 16e Fuller CE. Walker DG. J. Org. Chem.  1991,  56:  4066 
  • 16f Mori K. Brevet J.-L. Synthesis  1991,  1125 
  • 16g Pinhey JT. Stoermer MJ. J. Chem. Soc., Perkin Trans. 1  1991,  2455 
  • 16h Brevet J.-L. Mori K. Synthesis  1992,  1007 
  • 16i Matveeva ED. Erin AS. Kurz AL. Russian J. Org. Chem.  1997,  33:  1065 
  • 16j Kim SH. Wei H.-X. Willis S. Li G. Synth. Commun.  1999,  29:  4179 
  • 16k Kuang C. Senboku H. Tokuda M. Tetrahedron Lett.  2001,  42:  3893 
14

The experimental procedure for the DBU-mediated HGA lactonization. DBU (8.5 µL, 0.056 mmol) was added slowly to a solution of 8 (0.056 mmol) in anhyd THF (1 mL) stirred at 0 °C. After completion of the addition, the mixture was stirred at the ambient temperature (ca. 11 °C) for 23 h before being diluted with Et2O (100 mL) and washed in turn with 2 N HCl, sat. NaHCO3, H2O and brine. The organic phase was dried over anhyd Na2SO4. After removal of the solvent the residue was chromatographed on silica gel (1:400 EtOAc-hexanes) to give 1 as a white needle (20 mg, 70%), along with 9 (8 mg, 30%).
Data for 1: a white needle, mp 64-66 °C (lit. [4] mp 66-68 °C). [α]D 21 -12.8 (c 0.30, CHCl3) {lit. [4] [α]D 21 -12.7 (c 2.5, CHCl3)}. 1H NMR (300 MHz, CDCl3): δ = 4.22 (ddd, J = 7.3, 6.1, 3.9 Hz, 1 H), 3.17 (ddd, J = 9.0, 6.3, 3.8 Hz, 1 H), 1.86-1.68 (m, 3 H), 1.43-1.20 (m, 56 H), 0.88 (t, J = 6.8 Hz, 6 H). IR (KBr): 2955, 2918, 2851, 1806, 1472, 1145, 862, 717 cm-1. MS (EI): m/z (%) = 506 (10.27) [M+], 97 (100), 57 (89.72), 83 (79.90), 111 (63.27), 43 (60.00), 69 (58.15), 55 (54.80), 85 (41.53), 125 (37.18), 139 (18.69). ESI-HRMS: m/z calcd for C34H66O2Na [M + Na]+: 529.4939; found: 529.4955.

15

The FT-IR data for 9: FT-IR (KBr): 2955 (s), 2918 (s), 2849 (s), 2972 (s), 1472 (m), 1462 (m), 1435 (w), 1377 (w), 963 (m), 730 (m), 719 (m) cm-1 (intensity symbols: s for strong, m for medium, and w for weak).