Synlett 2005(8): 1281-1285  
DOI: 10.1055/s-2005-868505
LETTER
© Georg Thieme Verlag Stuttgart · New York

Efficient Synthesis of (+)-Kalafungin and (-)-Nanaomycin D by Asymmetric Dihydroxylation, Oxa-Pictet-Spengler Cyclization, and H2SO4-Mediated Isomerization

Rodney A. Fernandes, Reinhard Brückner*
Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
Fax: +49(761)2036100; e-Mail: reinhard.brueckner@organik.chemie.uni-freiburg.de;
Further Information

Publication History

Received 11 March 2005
Publication Date:
03 May 2005 (online)

Abstract

The pyranonaphthoquinone antibiotics and antitumor agents (+)-kalafungin (1) and (-)-nanaomycin D (3 = ent-1) were synthesized from 1,5-napthalenediol (13) in 11 steps. Stereocontrol was high: 99.5 ee/93% diastereoselectivity for 1, 98.5% ee/94% ­diastereoselectivity for 3. Enantiocontrol was achieved by the asymmetric dihydroxylation of the β,γ-unsaturated ester 9. Dia­stereocontrol was realized in the final step by an almost complete epimerization in H2SO4.

    References

  • 1a Krohn K. Tetrahedron  1990,  46:  291 
  • 1b Thomson RH. In The Total Synthesis of Natural Products   Vol. 8:  Apsimon J. Wiley; New York: 1992.  p.311 
  • 1c Naturally Occurring Quinones   Vol. 4:  Thomson RH. Blackie; Glasgow U.K.: 1996. 
  • The synthesis of quinones has been a topic of considerable and continuing interest:
  • 1d Tisler M. Adv. Heterocycl. Chem.  1989,  45:  37 
  • 1e Kutyrev AA. Tetrahedron  1991,  47:  8043 
  • 1f Akai S. Kita Y. Org. Prep. Proced. Int.  1998,  30:  603 
  • 1g Gallagher PT. Contemp. Org. Synth.  1996,  3:  433 
  • 2a Bergy ME. J. Antibiot.  1968,  21:  454 
  • 2b Hoeksema H. Krueger WC. J. Antibiot.  1976,  29:  704 
  • 3 Iwai Y. Kora A. Takahashi Y. Hayashi T. Awaya J. Masuma R. Oiwa R. Omura S. J. Antibiot.  1978,  31:  959 
  • 4 Omura S. Tanaka H. Okada Y. Marumo H. J. Chem. Soc., Chem. Commun.  1976,  320 
  • 5a Omura S. Tanaka H. Koyama Y. Oiwa R. Katagiri M. Awaya J. Nagai T. Hata T. J. Antibiot.  1974,  27:  363 
  • 5b Tanaka H. Koyama Y. Nagai T. Marumo H. Omura S. J. Antibiot.  1975,  28:  868 
  • Original structure:
  • 6a Takano S. Hasuda K. Ito A. Koide Y. Ishii F. Hanada I. Chihara S. Koyami T. J. Antibiot.  1976,  29:  765 
  • 6b Ogura H. Furuhata K. 9th International Congress of Heterocyclic Chemistry   Tokyo: August 1983, Abstr. S-IV-&: 114
  • 6c Revised structure: Leo P.-M. Morin C. Philouze C. Org. Lett.  2002,  4:  2711 
  • 7 Keller-Schlierlein W. Brufani M. Barcza S. Helv. Chim. Acta  1968,  51:  1257 
  • Reviews:
  • 8a Brimble AM. Pure Appl. Chem.  2000,  72:  1635 
  • 8b Brimble AM. Nairn MR. Prabaharan H. Tetrahedron  2000,  56:  1937 
  • 9 Moore HW. Science  1977,  197:  527 
  • 10a Kraus GA. Roth B. J. Org. Chem.  1978,  43:  4923 
  • 10b Li T. Ellison RH. J. Am. Chem. Soc.  1978,  100:  6263 
  • 10c Kraus GA. Cho H. Crowley S. Roth B. Sugimoto H. Prugh S. J. Org. Chem.  1983,  48:  3439 
  • 10d Foland LD. Decker OHW. Moore HW. J. Am. Chem. Soc.  1989,  111:  989 
  • 10e Brimble MA. Stuart SJ. J. Chem. Soc., Perkin Trans. 1  1990,  881 
  • 10f Kraus GA. Li J. Gordon MS. Jensen JH. J. Org. Chem.  1995,  60:  1154 
  • Syntheses of 1 and 3:
  • 11a Short communication: Tatsuta K. Akimoto K. Annaka M. Ohno Y. Kinoshita M. J. Antibiot.  1985,  38:  680 
  • 11b Full paper: Tatsuta K. Akimoto K. Annaka M. Ohno Y. Kinoshita M. Bull. Chem. Soc. Jpn.  1985,  58:  1699 
  • Synthesis of 3:
  • 11c Winters MP. Stranberg M. Moore HW. J. Org. Chem.  1994,  59:  7572 
  • Reviews:
  • 12a Lohray BB. Tetrahedron: Asymmetry  1992,  3:  1317 
  • 12b Johnson RA. Sharpless KB. Asymmetric Catalysis in Organic Synthesis   Ojima I. VCH; New York: 1993.  p.227 
  • 12c Kolb HC. VanNieuwenhze MS. Sharpless KB. Chem. Rev.  1994,  94:  2483 
  • 12d Bolm C. Hildebrand JP. Muniz K. In Catalytic Asymmetric Synthesis   2nd ed.:  Ojima I. Wiley-VCH; New York: 2000.  p.399 
  • 13a Harcken C. Brückner R. Angew. Chem., Int. Ed. Engl.  1997,  36:  2750 ; Angew. Chem. 1997, 109, 2866
  • 13b Harcken C. Brückner R. Rank E. Chem.-Eur. J.  1998,  4:  2342 ; corrigendum: Harcken, C.; Brückner, R.; Rank, E. Chem.-Eur. J. 1998, 4, 2390
  • 13c Berkenbusch T. Brückner R. Tetrahedron  1998,  54:  11461 
  • 13d Berkenbusch T. Brückner R. Tetrahedron  1998,  54:  11471 
  • 13e Harcken C. Brückner R. New J. Chem.  2001,  25:  40 
  • 13f Harcken C. Brückner R. Synlett  2001,  718 
  • 13g Harcken C. Brückner R. Tetrahedron Lett.  2001,  42:  3967 
  • 13h Kapferer T. Brückner R. Herzig A. König WA. Chem.-Eur. J.  2005,  11:  2154 
  • Method:
  • 14a Using 8a: Ragoussis N. Tetrahedron Lett.  1987,  28:  93 
  • 14b Using 8a or 8b: Yamanaka H. Yokoyama M. Sakamoto T. Shiraishi T. Sagi M. Mizugaki M. Heterocycles  1983,  20:  1541 
  • 15a Arndt-Eistert homologation of α,β-unsaturated carboxylic chlorides: Moore JA. J. Org. Chem.  1955,  20:  1607 
  • 15b Syntheses of α,β-unsaturated diazoketones from α,β-unsaturated carboxylic chlorides: Berenbom M. Fones WS. J. Org. Chem.  1949,  14:  1629 
  • 15c Ceccherelli P. Curini M. Marcotullio MC. Rosati O. J. Org. Chem.  1990,  55:  311 
  • 15d Checcherelli P. Curini M. Marcotullio MC. Rosati O. Wenkert E. J. Org. Chem.  1991,  56:  7065 
  • 15e Prestwich GD. Ujváry I. J. Labelled Comp. Radiopharm.  2002,  2:  37 
  • 17 Giles RGF. Mitchell PRK. Roos GHP. Strümpfer JMM. J. Chem. Soc., Perkin Trans. 1  1981,  2091 
  • 18a Tsuji J. Kiji J. Imamura S. Morikawa M. J. Am. Chem. Soc.  1964,  86:  4350 
  • 18b Murahashi S.-I. Imada Y. Taniguchi Y. Higashiura S. J. Org. Chem.  1993,  58:  1538 
  • 19a Jung ME. Hagenah JA. J. Org. Chem.  1987,  52:  1889 
  • 19b Kitani Y. Morita A. Kumamoto T. Ishikawa T. Helv. Chim. Acta  2002,  85:  1186 
  • 21 Still WC. Kahn M. Mitra A. J. Org. Chem.  1978,  43:  2923 
  • 24a Pyrek JS. Achmatowicz O. Zamojski A. Tetrahedron  1977,  33:  673 
  • 24b DeNinno MP. Schoenleber R. Perner RJ. Lijewski L. Asin KE. Britton DR. MacKenzie R. Kebabian JW. J. Med. Chem.  1991,  34:  2561 
  • 24c DeNinno MP. Perner RJ. Morton HE. DiDomenico S. J. Org. Chem.  1992,  57:  7115 
  • 24d Masquelin T. Hengartner U. Streith J. Synthesis  1995,  780 
  • 24e Masquelin T. Hengartner U. Streith J. Helv. Chim. Acta  1997,  80:  43 
  • 24f Giles GF. Rickards RW. Senanayake BS. J. Chem. Soc., Perkin Trans. 1  1998,  3949 
  • 24g Contant P. Haess M. Riegl J. Scalone M. Visnick M. Synthesis  1999,  821 
  • 24h Bianchi DA. Rua F. Kaufman TS. Tetrahedron Lett.  2004,  45:  411 
  • Seizable fractions of the 5,3a trans,3a,11b cis-isomer accompany 5,3a cis,3a,11b cis-dihydropyran formation only when exposure to acid is longer than required for ring-formation alone:
  • 26a

    Ref. [24d] reports a dihydropyran annulation using HCl (gaseous) and benzaldehyde; cis,cis:trans,cis ratios were 94:6 after 5 min at -5 °C and 16:84 after 2 h at r.t.

  • 26b

    Ref. [24g] describes a related dihydropyran generation using HCl and butanal at 25 °C; cis,cis:trans,cis ratios were 84:16 after 3 h and 22:78 after 8 h.

  • 29 Brimble AM. Phythian SJ. Prabaharan H. J. Chem. Soc., Perkin Trans. 1  1995,  2855 
  • H2SO4-mediated epimerizations of lactone-free dihydropyranonaphthoquinones:
  • 30a

    0:100 trans-23:cis-23 → 67:33 (ref. [10b] );

  • 30b 50:50 trans-23:cis-23 → 67:33. See: Uno H. J. Org. Chem.  1986,  51:  350 
  • 30c

    60:40 trans-24:cis-24 → 80:20 (ref. [24e] ).

  • 30d

    Related isomerization of the more highly substituted dihydropyranonaphthoquinone 25 (Figure [4] ): see ref. [11b]

16

Kapferer, T.; Brückner, R. unpublished results.

20

All new compounds gave satisfactory 1H- and 13C NMR spectra and provided correct combustion analyses (±0.4%).

22

Methyl (E)-4-(1,4,5-trimethoxynaphth-2-yl)-3-butenoate (9): NaBr (97.6 mg, 0.948 mmol, 25 mol%), Ph3P (79.6 mg, 0.303 mmol, 8 mol%), Pd2(dba)3CHCl3 (78.5 mg, 0.076 mmol, 2 mol%), and i-Pr2NEt (0.63 mL, 0.49 g, 3.80 mmol) were added sequentially to a solution of allyl acetate 11 (1.200 g, 3.793 mmol) in MeOH (5 mL). The reaction mixture was pressurized with CO (30 atm) in an autoclave and stirred at 50 °C for 6 h before cooling to r.t., quenching with H2O, and extraction with CHCl3 (3 × 20 mL). The combined organic layers were washed twice with H2O, dried (Na2SO4), and concentrated. The residue was purified by flash chromatography using cyclohexane-EtOAc (17:3 → 3:1) as an eluent to give 9 (1.001 g, 83%; 95:5 mixture with the isomeric α,β-unsaturated ester) as a yellow syrup. 1H NMR (500 MHz, CDCl3/TMS): δ = 3.35 (dd, J 2,3 = 7.1 Hz, 4 J 2,4 = 1.5 Hz, 2-H), 3.71 (s, MeO2C), 3.83, 3.93, and 3.96 (3 s, 3 × MeO), 6.40 (dt, J 3,4 = 16.2 Hz, J 3,2 = 7.1 Hz, 3-H), 6.82 (br d, J 6 ,7 = 7.8 Hz, 6¢-H), 6.93 (s, 3¢-H), 6.96 (dt, J 4,3 = 16.2 Hz, 4 J 4,2 = 1.5 Hz, 4-H), 7.38 (dd, J 7 ,6 = J 7 ,8 = 8.1 Hz, 7′-H), 7.68 (dd, J 8 ,7 = 8.4 Hz, 4 J 8 ,6 = 1.1 Hz, 8′-H).

23

The enantioselectivities were determined by HPLC. Column: Chiralcel OD-H No. ODHOCE-AJ071; Daicel Chemical Ind. Ltd.; eluent: n-heptane-EtOH (60:40); flow rate; 0.6 mL/min; UV detector: 233 nm; t R: 12.3 min for 10, 14.7 min for ent-10.

25

This was inferred from the high-field shifts of the italicized resonances in our 1H NMR spectrum (500 MHz, CDCl3; δ3a-H = 4.37, δ5-H = 5.07, and δ11b-H = 5.59 ppm) relative to the values published (ref. [11b] ) for the trans,cis-isomer:
δ3a-H = 4.73, δ5-H = 5.37, and δ11b-H = 5.58 ppm. Ref. [10f] reports a similar shift difference for the analogous signals of cis,cis-20 (δ values in analogous order: δ = 4.27, 4.84, and 5.33 ppm) vs. trans,cis-20 (δ values in analogous order: δ = 4.61, 4.96, and 5.33 ppm). See Figure [2] .

27

CAN oxidation of the C-5 epimer of ent-17. See ref. [11b]

28

The mechanism of the Lewis acid (BBr3)- or Brønsted acid (H2SO4)-mediated epimerization at C-5 of dihydropyranonaphthoquinones 18, 5-epi-1, and their enantiomers has not been investigated. We assume that neither C5-Ar nor C5-O bond cleavage but enone → dienol (as exemplified by formulas 21 and/or 22) tautomerism causes the configurational change. See Figure [3] .

31

[α]D 20 +160.6 (c 0.3, CHCl3); mp 168-170 °C. Ref. [11b] [α]D 24 +160 (c 0.3, CHCl3); mp 171-173 °C.

32

[α]D 20 -159.7 (c 0.35, CHCl3); mp 169-171°C. Ref. [11b] [α]D 24 -163 (c 0.44, CHCl3); mp 171-173 °C.