Synlett 2005(9): 1453-1455  
DOI: 10.1055/s-2005-868492
LETTER
© Georg Thieme Verlag Stuttgart · New York

Iridium-Catalyzed Oxidative Dimerization of Primary Alcohols to Esters Using 2-Butanone as an Oxidant

Takeyuki Suzuki*, Tomohito Matsuo, Kazuhiro Watanabe, Tadashi Katoh*
Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-Ku, Sendai, Miyagi 981-8558, Japan
Fax: +81(22)2752013; e-Mail: suzuki-t@tohoku-pharm.ac.jp; e-Mail: katoh@tohoku-pharm.ac.jp;
Further Information

Publication History

Received 28 February 2005
Publication Date:
25 April 2005 (online)

Abstract

Oxidative dimerization of primary alcohols with 2-butanone in the presence of an amino alcohol-based Ir bifunctional catalyst was accomplished for the first time. The reaction proceeds with 1-2 mol% of the catalyst and 0.3 mol equivalents of K2CO3 in 2-butanone at room temperature to give the corresponding dimeric esters in 30-93% yield.

    References

  • 1a Mulzer J. In Comprehensive Organic Functional Group Transformations   Vol. 5:  Katritzky AR. Meth-Cohn O. Rees CW. Moody CJ. Elsevier Science Ltd.; Oxford: 1995.  p.121 
  • 1b Larock RC. Comprehensive Organic Transformations   VCH Publishers, Inc.; New York: 1989.  p.835 
  • 1c Hudlicky M. Oxidations in Organic Chemistry   ACS Monograph Series, American Chemical Society; Washington DC: 1990.  p.131 
  • For recent examples of Tishchenko and related reactions, see:
  • 2a Ooi T. Ohmatsu K. Sasaki K. Miura T. Maruoka K. Tetrahedron Lett.  2003,  44:  3191 
  • 2b Gnanadesikan V. Horiuchi Y. Ohshima T. Shibasaki M. J. Am. Chem. Soc.  2004,  126:  7782 
  • 2c For a recent review: Törmäkangas OP. Koskinen AMP. Recent Res. Dev. Org. Chem.  2001,  5:  225 
  • 3 Robertson GR. Org. Synth., Coll. Vol. I   Wiley and Sons; New York: 1941.  p.138 
  • 4 Al Neirabeyeh M. Ziegler JC. Gross B. Caubère P. Synthesis  1976,  811 
  • 5 Nwaukwa SO. Keehn PM. Tetrahedron Lett.  1982,  23:  35 
  • 6 Kageyama T. Kawahara S. Kitamura K. Ueno Y. Okawara M. Chem. Lett.  1983,  1097 
  • 7 Takase K. Masuda H. Kai O. Nishiyama Y. Sakaguchi S. Ishii Y. Chem. Lett.  1995,  871 
  • 8 Bhar S. Chaudhuri SK. Tetrahedron  2003,  59:  3493 
  • 9 Merbouh N. Bobbitt JM. Brückner C. J. Org. Chem.  2004,  69:  5116 
  • 10 Tohma H. Maegawa T. Kita Y. Synlett  2003,  723 
  • 11 Nagashima H. Tsuji J. Chem. Lett.  1981,  1171 
  • 12 Blum Y. Reshef D. Shvo Y. Tetrahedron Lett.  1981,  22:  1541 
  • 13a Murahashi S.-I. Ito K. Naota T. Maeda Y. Tetrahedron Lett.  1981,  22:  5327 
  • 13b Murahashi S.-I. Naota T. Ito K. Maeda Y. Taki H. J. Org. Chem.  1987,  52:  4319 
  • 14 Tamaru Y. Yamada Y. Inoue K. Yamamoto Y. Yoshida Z. J. Org. Chem.  1983,  48:  1286 
  • 15 Masuyama Y. Takahashi M. Kurusu Y. Tetrahedron Lett.  1984,  25:  4417 
  • 16 Wang L. Eguchi K. Arai H. Seiyama T. Chem. Lett.  1986,  1173 
  • 17a Suzuki T. Morita K. Tsuchida M. Hiroi K. Org. Lett.  2002,  4:  2361 
  • 17b Suzuki T. Morita K. Matsuo Y. Hiroi K. Tetrahedron Lett.  2003,  44:  2003 
  • 17c Suzuki T. Morita K. Tsuchida M. Hiroi K. J. Org. Chem.  2003,  68:  1601 
  • Recent examples of hydrogen transfer reaction using Cp*Ir complexes, see:
  • 18a Mashima K. Abe T. Tani K. Chem. Lett.  1998,  1199 
  • 18b Murata K. Ikariya T. Noyori R. J. Org. Chem.  1999,  64:  2186 
  • 18c Ogo S. Makihara N. Watanabe Y. Organometallics  1999,  18:  5470 
  • 18d Ogo S. Makihara N. Kaneko Y. Watanabe Y. Organometallics  2001,  20:  4903 
  • 18e Fujita K. Furukawa S. Yamaguchi R. J. Organomet. Chem.  2002,  649:  289 
  • 18f Fujita K. Yamamoto K. Yamaguchi R. Org. Lett.  2002,  4:  2691 
  • 18g Abura T. Ogo S. Watanabe Y. Fukuzumi S. J. Am. Chem. Soc.  2003,  125:  4149 
  • 18h Fujita K. Li Z. Ozeki N. Yamaguchi R. Tetrahedron Lett.  2003,  44:  2687 
  • 18i Fujita K. Kitatsuji C. Furukawa S. Yamaguchi R. Tetrahedron Lett.  2004,  45:  3215 
  • 18j Fujita K. Fujii T. Yamaguchi R. Org. Lett.  2004,  6:  3525 
  • 18k Hanasaka F. Fujita K. Yamaguchi R. Organometallics  2004,  23:  1490 
  • 20 The use of other bases, such as Na2CO3, Cs2CO3, KHCO3, and KOAc resulted in lower reactivity. Although the role of the K2CO3 is not clear at present, it might increase the nucleophilicity of 1 to the corresponding aldehyde for the formation of hemiacetal. For the mechanistic study of acid- and base-catalyzed formation of the hemiacetal, see: Sorensen PE. Jencks WP. J. Am. Chem. Soc.  1987,  109:  4675 
19

Related oxidative lactonization of diols in the presence of acetone was reported by Murahashi et al., see ref. 13a.

21

General Procedure for the Oxidative Dimerization of 1.
A 10 mL test tube equipped with a magnetic stirring bar was charged with 42 mg (0.3 mmol) of K2CO3 and 1.0 mmol of alcohol under Ar. Then a solution of 11 mg (0.02 mmol, 2 mol%) of Ir complex 3 in butanone (0.24 mL, 2.7 mmol) was added to the above mixture and stirred at r.t. The mixture was passed through a short silica gel column (12 g, EtOAc) to remove the catalyst. The yields for the products of 2c and 2d were determined by gas chromatography using authentic samples and appropriate correction factors. The products of 2a, 2b, and 2d-m were purified by silica gel column chromatography (hexane-EtOAc).

22

Although TONs were not optimized at the moment, they were roughly calculated to be in range between 17 and 23 for most substrates [with single entry as high as 40 (entry 7)].

23

The mechanism of saturation is not clear at present. Partially saturated products were observed even without K2CO3 under a high-concentration condition (4.2 M). However, such saturated products were not observed with K2CO3 under a diluted condition (0.08 M). See also ref. 17c.