This feature focuses on a reagent chosen by a postgraduate, highlighting the uses and preparation of the reagent in current research.

Introduction

Nickel acetyl acetonate is also known as bis(acetylacetonato) nickel(II). It has been used as a catalyst for oligomerization, telomerization, hydrosilylation, reduction, cross-coupling, oxidation, conjugate addition, addition to multiple bonds and rearrangement reactions. It is a pale green solid (mp = 240 °C) that is soluble in ethers and aromatic and halogenated hydrocarbons.

Preparation

Ni(acac)$_2$ is commercially available. Alternatively, it can be prepared from potassium acetylacetonate and nickel(II) chloride by stirring for 30 minutes at room temperature in absolute ethanol.

Abstracts

(A) Ni(acac)$_2$-catalyzed couplings of enones, alkynes and main-group organometallic reagents generate acyclic structures in an efficient manner. Ikeda et al. produced conjugated enynes from acetylenic tin reagents.

(B) Ni(acac)$_2$ is used in InI-mediated direct allylation of carbonyl compounds with allylic alcohols. The reaction proceeded smoothly with catalytic amounts of Ni(acac)$_2$ and PPh$_3$ to give the corresponding homoallylic alcohols in high yields.

SYNLETT 2005, No. 6, pp 1042–1043

Advanced online publication: 23.03.2005

DOI: 10.1055/s-2005-864829; Art ID: V11405ST

© Georg Thieme Verlag Stuttgart · New York
(C) Intermolecular coupling of an electron-deficient olefin with a strained olefin using Ni(acac)₂ and a modified chiral monodentate oxazoline provides good yields and enantioselectivity.⁷

(D) Ni(acac)₂-catalyzed cross-coupling between two sp³ carbon centers allows the synthesis of polyfunctional products.⁸

(E) Ni(acac)₂ promotes the coupling of alkenes with aldehydes in the presence of triethylborane or diethylzinc as reducing agents.⁹ Triethylborane-mediated couplings work mainly for aromatic and unsaturated aldehydes, whereas diethylzinc-promoted couplings work best for aliphatic aldehydes and ketones. The reactions proceed well in water or in alcoholic solvents.¹⁰

(F) Ni(acac)₂-assisted coupling of 1,7-diyynes with silanes produces six-membered ring products with a Z-configured vinyl silane moiety.¹¹

(G) Takimoto and Mori developed the Ni(acac)₂-assisted coupling of 1,3-dienes, CO₂, and an organozinc reagent, allowing easy assembly of densely functionalized rings.¹² Terao et al. developed comparable multi-component coupling of two dienes, a silyl chloride, and a Grignard reagent.¹³ The procedure has been extended to asymmetric variants.¹⁴

References

