Introduction

Nickel acetyl acetonate is also known as bis(acetylacetonato) nickel(II). It has been used as a catalyst for oligomerization, telomerization, hydrosilylation, reduction, cross-coupling, oxidation, conjugate addition, addition to multiple bonds and rearrangement reactions. It is a pale green solid (mp = 240 °C) that is soluble in ethers and aromatic and halogenated hydrocarbons.

Preparation

Ni(acac)₂ is commercially available. Alternatively, it can be prepared from potassium acetylacetonate and nickel(II) chloride by stirring for 30 minutes at room temperature in absolute ethanol.¹

Abstracts

(A) Ni(acac)₂-catalyzed couplings of enones, alkynes and main-group organometallic reagents generate acyclic structures in an efficient manner. Ikeda et al. produced conjugated enynes from acetylenic tin reagents.² ³

(B) Ni(acac)₂ is used in InI-mediated direct allylation of carbonyl compounds with allylic alcohols.⁴ The reaction proceeded smoothly with catalytic amounts of Ni(acac)₂ and PPh₃ to give the corresponding homoallylic alcohols in high yields.⁵
(C) Intermolecular coupling of an electron-deficient olefin with a strained olefin using Ni(acac)$_2$ and a modified chiral monodentate oxazoline provides good yields and enantioselectivity.57

\[
\text{Bu$_3$Sn + TMS} \xrightarrow{\text{Ni(acac)$_2$, DIBAL-H}} \text{TMSO
}\]

(D) Ni(acac)$_2$-catalyzed cross-coupling between two sp3 carbon centers allows the synthesis of multifunctional products.8

(E) Ni(acac)$_2$ promotes the coupling of alkenes with aldehydes in the presence of triethylborane or diethylzinc as reducing agents.9 Triethylborane-mediated couplings work mainly for aromatic and unsaturated aldehydes, whereas diethylzinc-promoted couplings work best for aliphatic aldehydes and ketones. The reactions proceed well in water or in alcoholic solvents.10

(F) Ni(acac)$_2$-assisted coupling of 1,7-dienes with silanes produces six-membered ring products with a Z-configured vinyl silane moiety.11

(G) Takimoto and Mori developed the Ni(acac)$_2$-assisted coupling of 1,3-dienes, CO$_2$, and an organozinc reagent, allowing easy assembly of densely functionalized rings.12 Terao et al. developed comparable multi-component coupling of two dienes, a silyl chloride, and a Grignard reagent.13 The procedure has been extended to asymmetric variants.14

References

