Z Gastroenterol 2005; 43(10): 1133-1139
DOI: 10.1055/s-2005-858638
Übersicht

© Karl Demeter Verlag im Georg Thieme Verlag KG Stuttgart · New York

Mechanisms of Disease: PI3K/AKT Signaling in Gastrointestinal Cancers

Mechanisms of Disease: PI3K/Akt-Signalweg in gastrointestinalen TumorenP. Michl1 , J. Downward2
  • 1Abt. Innere Medizin I, Universitätsklinikum Ulm, Germany
  • 2Signal Transduction Laboratory, Cancer Research UK London Research Institute, UK
Further Information

Publication History

manuscript received: 4.6.2005

manuscript accepted: 4.8.2005

Publication Date:
12 October 2005 (online)

Zusammenfassung

Die Phosphoinositol-3-OH-Kinase (PI3K) und die von ihr aktivierte Serin/Threoninkinase Akt, auch als Proteinkinase B bekannt, sind wichtige Effektormoleküle verschiedener Rezeptor-Tyrosinkinasen. In den letzten Jahren häufen sich die Daten über Aberrationen bei Komponenten des PI3K/Akt-Signalwegs in verschiedenen Tumoren. Dieser Übersichtsartikel fasst die wichtigsten Berichte über Effekte des PI3K/Akt-Signalwegs auf Proliferation, Apoptoseresistenz, Angiogenese und Zellmotilität in gastrointestinalen Tumoren zusammen. Ferner werden die Aktivierung von PI3K/Akt durch verschiedene Wachstumsfaktoren, die Modulation von Effektormolekülen durch Akt-induzierte Phosphorylierung sowie neuartige Behandlungsstrategien diskutiert, die eine therapeutische Ausschaltung dieses Signalwegs beinhalten.

Abstract

The lipid kinase phosphoinositide 3-OH kinase (PI3K) and its downstream target Akt, also known as protein kinase B (PKB), are crucial effectors in oncogenic signaling induced by various receptor-tyrosine kinases. In recent years, data are accumulating that PI3K/Akt signaling components are frequently altered in a variety of human malignancies. This review summarizes the major effects of PI3K/Akt signaling on proliferation, survival and resistance to apoptosis, angiogenesis and cell motility in gastrointestinal cancers. In addition, activation of PI3K/Akt by various growth factors, the modulation of downstream targets by Akt-induced phosphorylation as well as novel treatment strategies targeting this pathway in gastrointestinal tumors are discussed.

References

  • 1 Fruman D A, Meyers R E, Cantley L C. Phosphoinositide kinases.  Annu Rev Biochem. 1998;  67 481-507
  • 2 Blume-Jensen P, Hunter T. Oncogenic kinase signalling.  Nature. 2001;  411 355-365
  • 3 Hunter T. Signaling - 2000 and beyond.  Cell. 2000;  100 113-127
  • 4 Fresno Vara JA, Casado E, de Castro J. et al . PI3K/Akt signalling pathway and cancer.  Cancer Treat Rev. 2004;  30 193-204
  • 5 Pawson T, Nash P. Protein-protein interactions define specificity in signal transduction.  Genes Dev. 2000;  14 1027-1047
  • 6 Staal S P. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma.  Proc Natl Acad Sci USA. 1987;  84 5034-5037
  • 7 Jones P F, Jakubowicz T, Pitossi F J. et al . Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily.  Proc Natl Acad Sci USA. 1991;  88 4171-4175
  • 8 Coffer P J, Woodgett J R. Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families.  Eur J Biochem. 1991;  201 475-481
  • 9 Bellacosa A, Testa J R, Staal S P. et al . A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region.  Science. 1991;  254 274-277
  • 10 Murthy S S, Tosolini A, Taguchi T. et al . Mapping of AKT3, encoding a member of the Akt/protein kinase B family, to human and rodent chromosomes by fluorescence in situ hybridization.  Cytogenet Cell Genet. 2000;  88 38-40
  • 11 Cantley L C. The phosphoinositide 3-kinase pathway.  Science. 2002;  296 1655-1657
  • 12 Alessi D R, Caudwell F B, Andjelkovic M. et al . Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase.  FEBS Lett. 1996;  399 333-338
  • 13 Mitsiades C S, Mitsiades N, Koutsilieris M. The Akt pathway: molecular targets for anti-cancer drug development.  Curr Cancer Drug Targets. 2004;  4 235-256
  • 14 Xu X, Sakon M, Nagano H. et al . Akt2 expression correlates with prognosis of human hepatocellular carcinoma.  Oncol Rep. 2004;  11 25-32
  • 15 Fujiwara Y, Hoon D S, Yamada T. et al . PTEN/MMAC1 mutation and frequent loss of heterozygosity identified in chromosome 10 q in a subset of hepatocellular carcinomas.  Jpn J Cancer Res. 2000;  91 287-292
  • 16 Kawamura N, Nagai H, Bando K. et al . PTEN/MMAC1 mutations in hepatocellular carcinomas: somatic inactivation of both alleles in tumors.  Jpn J Cancer Res. 1999;  90 413-418
  • 17 Lee Y I, Kang-Park S, Do S I. et al . The hepatitis B virus-X protein activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade.  J Biol Chem. 2001;  276 16 969-16 977
  • 18 Chung T W, Lee Y C, Ko J H. et al . Hepatitis B virus X protein modulates the expression of PTEN by inhibiting the function of p53, a transcriptional activator in liver cells.  Cancer Res. 2003;  63 3453-3458
  • 19 Chung T W, Lee Y C, Kim C H. Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways: involvement of invasive potential.  FASEB J. 2004;  18 1123-1125
  • 20 Street A, Macdonald A, Crowder K. et al . The hepatitis C virus NS5A protein activates a phosphoinositide 3-kinase-dependent survival signaling cascade.  J Biol Chem. 2004;  279 12 232-12 241
  • 21 Desbois-Mouthon C, Van Blivet-Eggelpoel M J, Beurel E. et al . Dysregulation of glycogen synthase kinase-3beta signaling in hepatocellular carcinoma cells.  Hepatology. 2002;  36 1528-1536
  • 22 Vejchapipat P, Tangkijvanich P, Theamboonlers A. et al . Association between serum hepatocyte growth factor and survival in untreated hepatocellular carcinoma.  J Gastroenterol. 2004;  39 1182-1188
  • 23 Suzuki A, Hayashida M, Kawano H. et al . Hepatocyte growth factor promotes cell survival from fas-mediated cell death in hepatocellular carcinoma cells via Akt activation and Fas-death-inducing signaling complex suppression.  Hepatology. 2000;  32 796-802
  • 24 Wang S Y, Chen B, Zhan Y Q. et al . SU5416 is a potent inhibitor of hepatocyte growth factor receptor (c-Met) and blocks HGF-induced invasiveness of human HepG2 hepatoma cells.  J Hepatol. 2004;  41 267-273
  • 25 Chen R H, Chang M C, Su Y H. et al . Interleukin-6 inhibits transforming growth factor-beta-induced apoptosis through the phosphatidylinositol 3-kinase/Akt and signal transducers and activators of transcription 3 pathways.  J Biol Chem. 1999;  274 23 013-23 019
  • 26 Factor V, Oliver A L, Panta G R. et al . Roles of Akt/PKB and IKK complex in constitutive induction of NF-kappaB in hepatocellular carcinomas of transforming growth factor alpha/c-myc transgenic mice.  Hepatology. 2001;  34 32-41
  • 27 Wang G L, Iakova P, Wilde M. et al . Liver tumors escape negative control of proliferation via PI3K/Akt-mediated block of C/EBP alpha growth inhibitory activity.  Genes Dev. 2004;  18 912-925
  • 28 Mottet D, Dumont V, Deccache Y. et al . Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells.  J Biol Chem. 2003;  278 31 277-31 285
  • 29 Arsham A M, Plas D R, Thompson C B. et al . Akt and hypoxia-inducible factor-1 independently enhance tumor growth and angiogenesis.  Cancer Res. 2004;  64 3500-3507
  • 30 Qi H L, Zhang Y, Ma J. et al . Insulin/protein kinase B signalling pathway upregulates metastasis-related phenotypes and molecules in H7721 human hepatocarcinoma cell line.  Eur J Biochem. 2003;  270 3795-3805
  • 31 Nakanishi K, Sakamoto M, Yasuda J. et al . Critical involvement of the phosphatidylinositol 3-kinase/Akt pathway in anchorage-independent growth and hematogeneous intrahepatic metastasis of liver cancer.  Cancer Res. 2002;  62 2971-2975
  • 32 Nakanishi K, Sakamoto M, Yamasaki S. et al . Akt phosphorylation is a risk factor for early disease recurrence and poor prognosis in hepatocellular carcinoma.  Cancer. 2005;  103 307-312
  • 33 Leng J, Han C, Demetris A J. et al . Cyclooxygenase-2 promotes hepatocellular carcinoma cell growth through Akt activation: evidence for Akt inhibition in celecoxib-induced apoptosis.  Hepatology. 2003;  38 756-768
  • 34 Cheng J, Imanishi H, Liu W. et al . Involvement of cell cycle regulatory proteins and MAP kinase signaling pathway in growth inhibition and cell cycle arrest by a selective cyclooxygenase 2 inhibitor, etodolac, in human hepatocellular carcinoma cell lines.  Cancer Sci. 2004;  95 666-673
  • 35 Senior K. COX-2 inhibitors: cancer prevention or cardiovascular risk?.  Lancet Oncol. 2005;  6 68
  • 36 Yamamoto S, Tomita Y, Hoshida Y. et al . Prognostic significance of activated Akt expression in pancreatic ductal adenocarcinoma.  Clin Cancer Res. 2004;  10 2846-2850
  • 37 Schlieman M G, Fahy B N, Ramsamooj R. et al . Incidence, mechanism and prognostic value of activated AKT in pancreas cancer.  Br J Cancer. 2003;  89 2110-2115
  • 38 Miwa W, Yasuda J, Murakami Y. et al . Isolation of DNA sequences amplified at chromosome 19q13.1-q13.2 including the AKT2 locus in human pancreatic cancer.  Biochem Biophys Res Commun. 1996;  225 968-974
  • 39 Cheng J Q, Ruggeri B, Klein W M. et al . Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA.  Proc Natl Acad Sci USA. 1996;  93 3636-3641
  • 40 Ruggeri B A, Huang L, Wood M. et al . Amplification and overexpression of the AKT2 oncogene in a subset of human pancreatic ductal adenocarcinomas.  Mol Carcinog. 1998;  21 81-86
  • 41 Asano T, Yao Y, Zhu J. et al . The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-kappaB and c-Myc in pancreatic cancer cells.  Oncogene. 2004;  23 8571-8580
  • 42 Okami K, Wu L, Riggins G. et al . Analysis of PTEN/MMAC1 alterations in aerodigestive tract tumors.  Cancer Res. 1998;  58 509-511
  • 43 Tanno S, Mitsuuchi Y, Altomare D A. et al . AKT activation up-regulates insulin-like growth factor I receptor expression and promotes invasiveness of human pancreatic cancer cells.  Cancer Res. 2001;  61 589-593
  • 44 Veit C, Genze F, Menke A. et al . Activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase is required for glial cell line-derived neurotrophic factor-induced migration and invasion of pancreatic carcinoma cells.  Cancer Res. 2004;  64 5291-5300
  • 45 Duxbury M S, Ito H, Benoit E. et al . RNA interference targeting focal adhesion kinase enhances pancreatic adenocarcinoma gemcitabine chemosensitivity.  Biochem Biophys Res Commun. 2003;  311 786-792
  • 46 Duxbury M S, Ito H, Benoit E. et al . Overexpression of CEACAM6 promotes insulin-like growth factor I-induced pancreatic adenocarcinoma cellular invasiveness.  Oncogene. 2004;  23 5834-5842
  • 47 Duxbury M S, Ito H, Zinner M J. et al . siRNA directed against c-Src enhances pancreatic adenocarcinoma cell gemcitabine chemosensitivity.  J Am Coll Surg. 2004;  198 953-959
  • 48 Fahy B N, Schlieman M, Virudachalam S. et al . AKT inhibition is associated with chemosensitisation in the pancreatic cancer cell line MIA-PaCa-2.  Br J Cancer. 2003;  89 391-397
  • 49 Bondar V M, Sweeney-Gotsch B, Andreeff M. et al . Inhibition of the phosphatidylinositol 3'-kinase-AKT pathway induces apoptosis in pancreatic carcinoma cells in vitro and in vivo.  Mol Cancer Ther. 2002;  1 989-997
  • 50 Ng S SW, Tsao M S, Chow S. et al . Inhibition of phosphatidylinositide 3-kinase enhances gemcitabine-induced apoptosis in human pancreatic cancer cells.  Cancer Res. 2000;  60 5451-5455
  • 51 Ng S S, Tsao M S, Nicklee T. et al . Wortmannin inhibits pkb/akt phosphorylation and promotes gemcitabine antitumor activity in orthotopic human pancreatic cancer xenografts in immunodeficient mice.  Clin Cancer Res. 2001;  7 3269-3275
  • 52 Min Y, Adachi Y, Yamamoto H. et al . Genetic blockade of the insulin-like growth factor-I receptor: a promising strategy for human pancreatic cancer.  Cancer Res. 2003;  63 6432-6441
  • 53 Stoll V, Calleja V, Vassaux G. et al . Dominant negative inhibitors of signalling through the phosphoinositol 3-kinase pathway for gene therapy of pancreatic cancer.  Gut. 2005;  54 109-116
  • 54 Yip-Schneider M T, Wiesenauer C A, Schmidt C M. Inhibition of the phosphatidylinositol 3’-kinase signaling pathway increases the responsiveness of pancreatic carcinoma cells to sulindac.  J Gastrointest Surg. 2003;  7 354-363
  • 55 Levitt R J, Pollak M. Insulin-like growth factor-I antagonizes the antiproliferative effects of cyclooxygenase-2 inhibitors on BxPC-3 pancreatic cancer cells.  Cancer Res. 2002;  62 7372-7376
  • 56 Grewe M, Gansauge F, Schmid R M. et al . Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells.  Cancer Res. 1999;  59 3581-3587
  • 57 Stephan S, Datta K, Wang E. et al . Effect of rapamycin alone and in combination with antiangiogenesis therapy in an orthotopic model of human pancreatic cancer.  Clin Cancer Res. 2004;  10 6993-7000
  • 58 Byun D S, Cho K, Ryu B K. et al . Frequent monoallelic deletion of PTEN and its reciprocal association with PIK3CA amplification in gastric carcinoma.  Int J Cancer. 2003;  104 318-327
  • 59 Kang Y H, Lee H S, Kim W H. Promoter methylation and silencing of PTEN in gastric carcinoma.  Lab Invest. 2002;  82 285-291
  • 60 Christensen J G, Schreck R, Burrows J. et al . A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo.  Cancer Res. 2003;  63 7345-7355
  • 61 Shinomiya N, Gao C F, Xie Q. et al . RNA interference reveals that ligand-independent met activity is required for tumor cell signaling and survival.  Cancer Res. 2004;  64 7962-7970
  • 62 Baoping Y, Guoyong H, Jieping Y. et al . Cyclooxygenase-2 inhibitor nimesulide suppresses telomerase activity by blocking Akt/PKB activation in gastric cancer cell line.  Dig Dis Sci. 2004;  49 948-953
  • 63 Zinda M J, Johnson M A, Paul J D. et al . AKT-1, - 2, and - 3 are expressed in both normal and tumor tissues of the lung, breast, prostate, and colon.  Clin Cancer Res. 2001;  7 2475-2479
  • 64 Roy H K, Olusola B F, Clemens D L. et al . AKT proto-oncogene overexpression is an early event during sporadic colon carcinogenesis.  Carcinogenesis. 2002;  23 201-205
  • 65 Jiang Y A, Fan L F, Jiang C Q. et al . Expression and significance of PTEN, hypoxia-inducible factor-1 alpha in colorectal adenoma and adenocarcinoma.  World J Gastroenterol. 2003;  9 491-494
  • 66 Zhou X P, Loukola A, Salovaara R. et al . PTEN mutational spectra, expression levels, and subcellular localization in microsatellite stable and unstable colorectal cancers.  Am J Pathol. 2002;  161 439-447
  • 67 Sheng H, Shao J, Townsend C M Jr. et al . Phosphatidylinositol 3-kinase mediates proliferative signals in intestinal epithelial cells.  Gut. 2003;  52 1472-1478
  • 68 Philp A J, Campbell I G, Leet C. et al . The phosphatidylinositol 3'-kinase p85alpha gene is an oncogene in human ovarian and colon tumors.  Cancer Res. 2001;  61 7426-7429
  • 69 Khaleghpour K, Li Y, Banville D. et al . Involvement of the PI 3-kinase signaling pathway in progression of colon adenocarcinoma.  Carcinogenesis. 2004;  25 241-248
  • 70 Samuels Y, Wang Z, Bardelli A. et al . High frequency of mutations of the PIK3CA gene in human cancers.  Science. 2004;  304 554
  • 71 Sasaki T, Irie-Sasaki J, Horie Y. et al . Colorectal carcinomas in mice lacking the catalytic subunit of PI(3)Kgamma.  Nature. 2000;  406 897-902
  • 72 Sekharam M, Zhao H, Sun M. et al . Insulin-like growth factor 1 receptor enhances invasion and induces resistance to apoptosis of colon cancer cells through the Akt/Bcl-x(L) pathway.  Cancer Res. 2003;  63 7708-7716
  • 73 Venkateswarlu S, Dawson D M, St Clair P. et al . Autocrine heregulin generates growth factor independence and blocks apoptosis in colon cancer cells.  Oncogene. 2002;  21 78-86
  • 74 Windham T C, Parikh N U, Siwak D R. et al . Src activation regulates anoikis in human colon tumor cell lines.  Oncogene. 2002;  21 7797-7807
  • 75 Bates R C, Edwards N S, Burns G F. et al . A CD44 survival pathway triggers chemoresistance via lyn kinase and phosphoinositide 3-kinase/Akt in colon carcinoma cells.  Cancer Res. 2001;  61 5275-5283
  • 76 Bao S, Ouyang G, Bai X. et al . Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway.  Cancer Cell. 2004;  5 329-339
  • 77 Medema R H, Kops G J, Bos J L. et al . AFX-like forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1.  Nature. 2000;  404 782-787
  • 78 Schmidt M, Fernandez de Mattas S, van der Horst A. et al . Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D.  Mol Cell Biol. 2002;  22 7842-7852
  • 79 Wang Q, Wang X, Hernandez A. et al . Inhibition of the phosphatidylinositol 3-kinase pathway contributes to HT29 and Caco-2 intestinal cell differentiation.  Gastroenterology. 2001;  120 1381-1392
  • 80 Wang Q, Wang X, Hernandez A. et al . Regulation of TRAIL expression by the phosphatidylinositol 3-kinase/Akt/GSK-3 pathway in human colon cancer cells.  J Biol Chem. 2002;  277 36 602-36 610
  • 81 Jansen B J, van Ruissen F, Cerneus S. et al . Tumor necrosis factor related apoptosis inducing ligand triggers apoptosis in dividing but not in differentiating human epidermal keratinocytes.  J Invest Dermatol. 2003;  121 1433-1439
  • 82 Carter J H, Douglass L E, Deddens J A. et al . Pak-1 expression increases with progression of colorectal carcinomas to metastasis.  Clin Cancer Res. 2004;  10 3448-3456
  • 83 Adachi Y, Lee C T, Coffee K. et al . Effects of genetic blockade of the insulin-like growth factor receptor in human colon cancer cell lines.  Gastroenterology. 2002;  123 1191-1204
  • 84 Bianco C, Tortora G, Bianco R. et al . Enhancement of antitumor activity of ionizing radiation by combined treatment with the selective epidermal growth factor receptor-tyrosine kinase inhibitor ZD1839 (Iressa).  Clin Cancer Res. 2002;  8 3250-3258
  • 85 Ihle N T, Williams R, Chow S. et al . Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling.  Mol Cancer Ther. 2004;  3 763-772
  • 86 Meuillet E J, Ihle N, Baker A F. et al . In vivo molecular pharmacology and antitumor activity of the targeted Akt inhibitor PX-316.  Oncol Res. 2004;  14 513-527
  • 87 Arico S, Pattingre S, Bauvy C. et al . Celecoxib induces apoptosis by inhibiting 3-phosphoinositide-dependent protein kinase-1 activity in the human colon cancer HT-29 cell line.  J Biol Chem. 2002;  277 27 613-27 621
  • 88 Seeliger H, Guba M, Koehl G E. et al . Blockage of 2-deoxy-D-ribose-induced angiogenesis with rapamycin counteracts a thymidine phosphorylase-based escape mechanism available for colon cancer under 5-fluorouracil therapy.  Clin Cancer Res. 2004;  10 1843-1852

Dr. Patrick Michl

Abt. Innere Medizin I, Uniklinikum Ulm

Robert-Koch-Str.8

89081 Ulm

Germany

Fax: ++ 49/7 31/5 00-2 43 02

Email: patrick.michl@medizin.uni-ulm.de

    >