Ernährung & Medizin 2004; 19(4): 194-199
DOI: 10.1055/s-2004-837282
VFED news

© Hippokrates Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG

Die Bedeutung von Folsäure für die Gesundheit in verschiedenen Lebensphasen - Teil 2: Folsäure und kardiovaskuläre Erkrankungen

The significance of folic acid supplementation in various phases of life - Part II: Folic acid and cardiovascular diseasesJudith Heinz, Jutta Dierkes
Further Information

Publication History

Publication Date:
04 December 2006 (online)

Zusammenfassung

Neben der Fehlbildungsprävention durch das wasserlösliche Vitamin Folsäure wurde in den vergangenen Jahren die Assoziation von Folsäure mit kardiovaskulären Erkrankungen untersucht. Genaue Mechanismen der kardioprotektiven Wirkung von Folsäure sind bislang unklar. In zahlreichen Studien wurde die Beeinflussung eines erhöhten Homocysteinspiegels, der als Risikofaktor für Herz-Kreislauf-Erkrankungen gilt, durch Folsäure untersucht. Folsäure ist hierbei in der Lage, die Konzentrationen von Homocystein im Plasma zu senken. Allerdings ergaben die Untersuchungen zum Teil kontroverse Ergebnisse, so dass noch nicht eindeutig geklärt ist, ob erhöhte Homocysteinkonzentrationen an der Pathogenese der Atherosklerose beteiligt sind oder einen indirekten Risikomarker für kardiovaskuläre Erkrankungen darstellen, wie zum Beispiel für einen Folsäuremangel. Die Bedeutung der Folsäuresupplementation in der Sekundärprävention ist ebenfalls noch nicht eindeutig geklärt, da bisher keine Ergebnisse aus klinischen Interventionsstudien vorliegen.

Summary

Apart from the prevention of congenital malformations by supple- mentation of folic acid, the association of folate intake and cardiovascular diseases has been studied. In fact, exact mechanisms causing the cardioprotective effects of folate supplementation have not been adequately investigated. However, a large number of relative studies could prove the influence of folate on the homocysteine concentration of plasma which is considered a risk factor for cardiovascular diseases. It was discovered that folic acid can lower the homocysteine concentration. These investigations have in part led to contrasting results. It was, for instance, not possible to find out whether an increased homocysteine concentration contributes to the pathogenesis of atherosclerosis or whether it denotes an indirect risk factor for cardiovascular diseases such as a folic-acid deficiency. Neither has the impact of folic acid supplementation as a secondary prophylactic treatment been definitely cleared since results of intervention studies are still lacking.

Literatur

  • 34 Mc KS Cully. et al. .Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 1969: 5611-5628
  • 35 Graham IM. et al. . Plasma homocysteine as a risk factor for cardiovascular disease: The European Concerted Action Project.  JAMA. 1997;  277 1775-1781
  • 36 Clarke R. et al. . Hyperhomocysteinemia: an independent risk factor for vascular disease.  N Eng J Med. 1991;  324 1149-1155
  • 37 Brattström L. et al. . Hyperhomocysteinaemia in stroke: prevalence, cause, and relationships to type of stroke and stroke risk factors.  Eur J Clin Invest. 1992;  22 214-221
  • 38 Verhoef P. et al. . Prospective studies of homocysteine and cardiovascular disease.  Nutr Rev. 1995;  53 283-288
  • 39 Ford ES. et al. . Homocyst(e)ine and cardiovascular disease: a systematic review of the evidence with special emphasis on case-control studies and nested case-control studies.  Int J Epidemiol. 2002;  31 59-70
  • 40 Boushey CJ. et al. . A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes.  JAMA. 1995;  274 1049-1057
  • 41 The Homocysteine Studies Collaboration . Homocysteine and risk of ischemic heart disease and stroke. A meta-analysis.  JAMA. 2002;  288 2015-2022
  • 42 Alfthan G. et al. . Relation of serum homocysteine and lipoprotein(a) concentrations to atherosclerotic disease in a prospective Finnish population based study.  Atherosclerosis. 1994;  106 9-19
  • 43 Evans RW. et al. . Homocyst(e)ine and risk of cardiovascular disease in the Multiple Risk Factor Intervention Trial.  Arterioscler Thromb Vasc Biol. 1997;  17 1947-1953
  • 44 Folsom AR. et al. . Prospective study of coronary heart disease incidence in relation to fasting total homocysteine, related genetic polymorphisms, and B vitamins: the Atherosclerosis Risk in Communities (ARIC) study.  Circulation. 1998;  98 204-210
  • 45 Nygard O. et al. . Plasma homocysteine levels and mortality in patients with coronary artery disease.  N Engl J Med. 1997;  337 230-236
  • 46 Chasan-Taber L. et al. . A prospective study of folate and vitamin B6 and risk of myocardial infarction in US physicians.  J Am Coll Nutr. 1996;  15 136-143
  • 47 Giles WH. et al. . Serum folate and risk for ischemic stroke. First National Health and Nutrition Examination Survey epidemiologic follow-up study.  Stroke. 1995;  26 1166-1170
  • 48 Bazzano LA. et al. . Dietary intake of folate and risk of stroke in US men and women: NHANES I Epidemiologic Follow-up Study. National Health and Nutrition Examination Survey.  Stroke. 2002;  33 1183-1188
  • 49 Rimm EB. et al. . Folate and vitamin B6 from diet and supplements in relation to risk of coronary heart disease among women.  JAMA. 1998;  279 359-364
  • 50 Voutilainen S. et al. . Plasma total homocysteine concentration and the risk of acute coronary events: the Kuopio Ischaemic Heart Disease Risk Factor Study.  J Intern Med. 2000;  248 217-222
  • 51 Voutilainen S. et al. . Low serum folate concentrations are associated with an excess incidence of acute coronary events: the Kuopio Ischaemic Heart Disease Risk Factor Study.  Eur J Clin Nutr. 2000;  54 424-428
  • 52 Loria CM. et al. . Serum folate and cardiovascular disease mortality among US men and women.  Arch Intern Med. 2000;  160 3258-3262 Erratum in: Arch Intern Med. 2001;  161 410
  • 53 Ford ES, Byers TE, Giles WH. Serum folate and chronic disease risk: findings from a cohort of United States adults.  Int J Epidemiol. 1998;  27 592-598
  • 54 Morrison HI. et al. . Serum folate and risk of fatal coronary heart disease.  JAMA. 1996;  275 1893-1896
  • 55 Selhub J. et al. . Vitamin status and intake as primary determinants of homocysteinemia in an elderly population.  JAMA. 1993;  270 2693-2698
  • 56 Verhoef P. et al. . Homocysteine metabolism and risk of myocardial infarction: relation with vitamins B6, B12, and folate.  Am J Epidemiol. 1996;  143 845-859
  • 57 Schnyder G. et al. . Effect of homocysteine-lowering therapy with folic acid, vitamin B12, and vitamin B6 on clinical outcome after percutaneous coronary intervention: the Swiss Heart study: a randomized controlled trial.  JAMA. 2002;  288 973-979
  • 58 Ubbink JB. et al. . Vitamin requirements for the treatment of hyperhomocysteinemia in humans.  J Nutr. 1994;  124 1927-1933
  • 59 Vermeulen EG. et al. . Effect of homocysteine-lowering treatment with folic acid plus vitamin B6 on progression of subclinical atherosclerosis: a randomised, placebo-controlled trial.  Lancet. 2000;  355 517-522
  • 60 Homocysteine Lowering Trialists' Collaboration . Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomised trials.  BMJ. 1998;  316 894-898
  • 61 Dierkes J. et al. . Folic acid and Vitamin B6 supplementation and plasma homocysteine concentrations in healthy young women.  Int J Vitam Nutr Res. 1998;  68 98-103
  • 62 Brouwer IA. et al. . Dietary folate from vegetables and citrus fruit decreases plasma homocysteine concentrations in humans in a dietary controlled trial.  J Nutr. 1999;  129 1135-1139
  • 63 van Oort FV. et al. . Folic acid and reduction of plasma homocysteine concentrations in older adults: a dose-response study.  Am J Clin Nutr. 2003;  77 1318-1323
  • 64 Dierkes J. et al. . Homocysteine lowering effect of different multivitamin preparations in patients with end-stage renal disease.  J Ren Nutr. 2001;  11 67-72
  • 65 Eikelboom JW. et al. . Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence.  Ann Intern Med. 1999;  131 363-375
  • 66 Blundell G. et al. . Homocysteine mediated endothelial cell toxicity and its amelioration.  Atherosclerosis. 1996;  122 163-172
  • 67 Tsai JC. et al. . Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis.  Proc Natl Acad Sci U S A. 1994;  91 6369-6373
  • 68 Dudman NP. et al. . Circulating lipid hydroperoxide levels in human hyperhomocysteinemia. Relevance to development of arteriosclerosis.  Arterioscler Thromb. 1993;  13 512-516
  • 69 Heinecke JW. et al. . Oxidation of low density lipoprotein by thiols: superoxide-dependent and -independent mechanisms.  J Lipid Res. 1993;  34 2051-2061
  • 70 McDonald L. et al. . Homocysteinuria, Thrombosis, and the blood-platelets.  Lancet. 1964;  15 745-746
  • 71 Rodgers GM. et al. . Activation of endogenous factor V by a homocysteine-induced vascular endothelial cell activator.  J Clin Invest. 1986;  77 1909-1916
  • 72 Khajuria A. et al. . Induction of monocyte tissue factor expression by homocysteine: a possible mechanism for thrombosis.  Blood. 2000;  96 966-972
  • 73 Tawakol A. et al. . Hyperhomocyst(e)inemia is associated with impaired endothelium-dependent vasodilation in humans.  Circulation. 1997;  95 1119-1121
  • 74 Chambers JC. et al. . Acute hyperhomocysteinaemia and endothelial dysfunction.  Lancet. 1998;  351 36-37
  • 75 Bellamy MF. et al. . Hyperhomocysteinemia after an oral methionine load acutely impairs endothelial function in healthy adults.  Circulation. 1998;  98 1848-1852
  • 76 Usui M. et al. . Endothelial dysfunction by acute hyperhomocyst(e)inaemia: restoration by folic acid.  Clin Sci (Lond). 1999;  96 235-239
  • 77 Chambers JC. et al. . Improved vascular endothelial function after oral B vitamins: An effect mediated through reduced concentrations of free plasma homocysteine.  Circulation. 2000;  102 2479-2483
  • 78 Chao CL. et al. . Effect of short-term vitamin (folic acid, vitamins B6 and B12) administration on endothelial dysfunction induced by post-methionine load hyperhomocysteinemia.  Am J Cardiol. 1999;  84 1359-1361
  • 79 Verhaar MC. et al. . 5-methyltetrahydrofolate, the active form of folic acid, restores endothelial function in familial hypercholesterolemia.  Circulation. 1998;  97 237-241
  • 80 Kaufman S. Some metabolic relationships between biopterin and folate: implications for the »methyl trap hypothesis«.  Neurochem Res. 1991;  16 1031-1036
  • 81 Das UN. Folic acid says NO to vascular diseases.  Nutrition. 2003;  19 686-692
  • 82 Thamm M. et al. . Folsäureversorgung von Frauen im gebärfähigen Alter.  Gesundheitswesen. 1999;  61 S207-S212
  • 83 Herbert V. Minimal daily adult folate requirement.  Arch Intern Med. 1962;  110 155
  • 84 Deutsche Gesellschaft für Ernährung u.a. .Referenzwerte für die Nährstoffzufuhr. Frankfurt am Main: Umschau/Braus 2000: 117-122
  • 85 Deutsche Gesellschaft für Ernährung .Ernährungsbericht 2000. Frankfurt am Main: Druckerei Henrich 2000
  • 86 Mensink GB. Ernährungssurvey.  Gesundheitswesen. 1998;  60 S83-S86
  • 87 Nährwert-Kennzeichnungsverordnung. Verordnung über nährwertbezogene Angaben bei Lebensmitteln und die Nährwertkennzeichnung von Lebensmitteln vom 25.11.1994 (BGBI I S.3526, geändert durch Art.23 VO zu Neuordnung lebensmittelrechtlicher Vorschriften über Zusatzstoffe vom 29.1.1998 [BGBI I S.230, 303])
  • 88 Malinow MR. et al. . Reduction of plasma homocyst(e)ine levels by breakfast cereal fortified with folic acid in patients with coronary heart disease.  N Engl J Med. 1998;  338 1009-1015
  • 89 Quinlivan EP. et al. . Effect of food fortification on folic acid intake in the United States.  Am J Clin Nutr. 2003;  77 221-225
  • 90 Baily LB. Factors affecting folate bioavailability.  Food Technology. 1988;  42 206-212
  • 91 Riddell LJ. et al. . Dietary strategies for lowering homocysteine concentrations.  Am J Clin Nutr. 2000;  71 1448-1454

1 Ernährung & Medizin 2004; 19: 141-146.

Dipl. oec. troph. Judith Heinz
PD Dr. oec. troph. Jutta Dierkes

Institut für Klinische Chemie und Pathobiochemie

Universitätsklinik Magdeburg

Leipziger Str. 44

39120 Magdeburg

Email: judith.heinz@medizin.uni-magdeburg.de

    >