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Abstract

This paper seeks to catalyse a reappraisal of the nature, fate and
biological significance in humans of phenols, polyphenols and
tannins (PPT) consumed in normal diets, and in particular ques-
tions the primacy of PPT radical-scavenging mechanisms for the
supposed health benefits of diets rich in fruits and vegetables.
PPT are classified by structure and function. Arguments are pres-
ented to show that cinnamates and derived polyphenols make
significantly larger contributions to the total PPT intake than
the flavonols and flavones upon which the vast majority of atten-
tion has been focussed previously. Daily intakes of total PPT may
range from less than 100 mg to in excess of 2 g, and the critical
importance of coffee and black tea as the major dietary sources
is shown. Only some 5% of the dietary PPT is absorbed in the
duodenum, and of this only some 5%, mainly flavanols, reaches
the plasma unchanged, the balance being mammalian conju-
gates. Over 95% of the intake passes to the colon and is ferment-
ed by the gut microflora. A fraction of the resulting microbial me-
tabolites is absorbed and appears in the plasma primarily as
mammalian conjugates. Even following high intakes of PPT, the
plasma metabolites collectively make a very small (less than
5%) and transient contribution to the total concentration of re-
dox active substances in plasma. This explains the failure of

most studies that sought to detect an increase in plasma antiox-
idant power after consuming a PPT-rich meal or supplement. The
powerfully antioxidant PPT aglycones, much used in in vitro
studies, do not reach the plasma. The redox potential of those un-
changed PPT and PPT metabolites that reach the plasma enables
them to scavenge damaging radicals, but the endogenous plasma
antioxidants, especially ascorbate, are required for disposal of
the resultant phenoxyl radicals. Black tea and coffee, the major
sources of PPT, are poor sources of ascorbate. It is suggested that
if diets rich in fruits and vegetables are health-promoting, and if
these effects are due to PPT, then alternatives to radical-scaven-
ging mechanisms must be sought. Evidence is presented to show
that some mammalian metabolites of PPT may indeed be able to
protect the vascular endothelium and that diets rich in PPT may
in humans at normal dietary levels have the ability to protect
against Type Il diabetes and the metabolic syndrome through ef-
fects on glucose absorption and associated hormones. Such ef-
fects are recommended for further investigation.
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Introduction

Simple phenols, polyphenols and tannins (PPT) have been of
great interest for many years, in part because of their impact on
the colour, odour and flavour of foods and beverages [1], but
more recently because of the possibility that these substances
may have health-protecting properties [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13]. PPT may be classified in several
ways, for example, by biosynthetic origin, occurrence, function
or effect, or structure [1], [12], [14]. A classification based on
structure and function will be used in this paper [15]. Simple
phenols are substances containing only one aromatic ring and
bearing at least one phenolic hydroxy group and possibly other
substituents, whereas polyphenols contain more than one such
aromatic ring. Phenols and polyphenols may occur as unconjugat-
ed aglycones or as conjugates, frequently with sugars, organic
acids, amino acids, lipids, etc. [16].

The Diversity of Dietary Phenols, Polyphenols and Tannins

The commonest simple phenols are cinnamates that have a C5-C;
structure [17], [18] accompanied by Cs-C, and C4-C; compounds,
and a few unsubstituted phenols [19], [20], [21]. In general these
occur as conjugates. Flavonoids are the most extensively studied
polyphenols, all characterised by a C5-C;5-Cg structure, subdivided
by the nature of the C; element into anthocyanins, chalcones, di-
hydrochalcones, flavanols, flavanones, flavones, flavonols, isofla-
vones and proanthocyanidins. The flavanols and proanthocyani-
dins generally occur unconjugated but the others normally occur
as glycosides. Since the seminal paper of Hertog et al. [22] there
has been a tendency to think of dietary PPT as encompassing only
the flavonoids, and the flavonoids per se to consist only of the
three flavonols and two flavones that featured in that study, but
this is misleading and was never intended. It is not possible to
say with precision just how many individual PPT occur regularly
in human diets, but on present evidence a figure in excess of 200
seems reasonable [16].

The term “tannin” refers historically to crude plant preparations
that are capable of converting hides to leather [23] and such pre-
parations are not consumed as human food. However, the func-
tional polyphenols contained therein at high concentrations may
also occur in certain foods and beverages but at comparatively
low concentrations that would render them totally ineffective
for producing leather. These polyphenols may be subdivided
into the flavonoid-derived proanthocyanidins (condensed tan-
nins) [24] and the gallic acid-derived and ellagic acid-derived hy-
drolysable tannins, this latter subgroup being of more restricted
occurrence in human food (but commoner in some animal feeds)
[25]. The phloroglucinol-derived phlorotannins, while never
used for preparing leather, also have a limited occurrence in hu-
man food [19]. The more recent term “phytoestrogen” refers to
substances with oestrogenic and/or anti-androgenic activity at
least in vitro, and encompasses some isoflavones, some stilbenes,
some lignans and some coumarins [26]. The lignans are not oes-
trogen-active until transformed by the gut microflora [26], [27].
“Antioxidants” is a third function-based term much used to de-
scribe PPT, but individual compounds differ markedly in their
ability to scavenge reactive oxygen species and reactive nitrogen
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species, and inhibit oxidative enzymes. Mammalian metabolites
of PPT do not necessarily retain fully the antioxidant ability of
the PPT found in plants and especially not that of their aglycones
as commonly tested in vitro [28], [29].

The PPT discussed above are substances found in healthy and in-
tact plant tissues, and in the main are of known structure. How-
ever, many traditional foods and beverages as consumed have
been produced by more or less extensive processing of such plant
tissues, resulting in biochemical or chemical transformations of
the naturally-occurring PPT. In some cases, black tea, matured
red wines, and coffee beverage, for example, these transforma-
tions may be substantial, generating large quantities of substan-
ces not found in the original plant material. Despite significant
advances in the last decade [30], [31], [32], [33], [34], [35], [36],
[37], [38], [39], [40], [41], the structures of the majority of these
novel compounds have yet to be elucidated. Although often de-
scribed as tannins, these substances are not functional tanning
agents, and should be referred to collectively as derived polyphe-
nols until such time as their full structural characterisation per-
mits a more precise nomenclature.

The Consumption of PPT

There have been several attempts to estimate the quantities of
PPT consumed, either by using diet diaries or food frequency
questionnaires and data on the typical composition of individual
commodities [3], [8], [42], [43], [44], [45], [46], [47], [48], [49],
[50], or by diet analysis [6], 22], [51]. In comparison with the
comprehensive databases providing the content in the diet of
the established micro- and macro-nutrients, data for the con-
tents of PPT are much more limited. Those data available for PPT
content have been obtained by many different methods of analy-
sis, rarely take account of the effects of agricultural practice, sea-
son, cooking or commercial processing, are not necessarily just
for the edible portion, and may be for varieties of fruit and vege-
table different from those consumed in a particular diet under
investigation [45], [46], [52].

These are potentially serious limitations since quantitatively cul-
tivars may differ substantially in composition, and the non-ed-
ible parts of fruits and vegetables may differ greatly both quanti-
tatively and qualitatively, compared with the flesh or juice [53].
In addition, domestic cooking and commercial processing may in
some cases cause extensive leaching and destruction [54], [55],
[56], [57],[58], [59], [60].

Data based upon analysis of particular diets avoid these limita-
tions but are usually restricted to a few PPT because of the dif-
ficulties and cost associated with quantifying so many individ-
ual compounds of known structure, to say nothing of the ser-
ious difficulties associated with quantifying the uncharacter-
ised derived polyphenols [61]. When such data are available,
they are usually for PPT as aglycones released by hydrolysis (to
simplify the analysis still further) and generally for the flavo-
nols and flavones first studied by Hertog et al. [22] since these
are amongst the easiest to determine [44], [47], [48], [51], [52],
[62], [63], [64], [65], [66], [67], [68]. There are more limited
data for flavanones [44], [64] and isoflavones after hydrolysis
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[44], [52], and flavanols, and proanthocyanidins [6], [69]
(which occur as aglycones).

In an attempt at modest cost to shed more light on the nature
and quantity of PPT consumed by various populations we devel-
oped a computerised spreadsheet database beginning with the
several hundred papers identified in the NEODIET reviews [16]
with continued updating as more information has been pub-
lished or found [17], [52], [70], [71], [72], [73], [74], [ 75]. The da-
tabase covers 80 commaodities, including five alcoholic bevera-
ges, six fruit juices and three other non-alcoholic beverages, and
14 PPT subgroups including derived polyphenols, with every en-
try labelled to show the paper(s) from which the information
was taken. Data sources have been restricted to papers using
specific methods of analysis: data for “total phenols by Folin-Cio-
calteu” or “total antioxidant power as gallic acid equivalents”
and similar, have been excluded. In order to reflect the variability
in composition, data have always been entered as “high” and
“low” values (mean + 20 wherever possible) and an overall
mean for each commodity used in determining the amounts of
PPT consumed.

While recognising the limitations (discussed above) of such an
approach to estimating diet composition and the intake of PPT,
using this database in conjunction with diet diaries available
from our other studies [76], [77], [78] has produced interesting
data (Table 1) and insights.

From Table 1 it is clear that PPT intakes may vary substantially,
and that the flavones and flavonols, upon which most emphasis
has so far been placed [22], [44], [47], [48], [51], [52], [62], [63],
[64],[65], [66], [67], [68], form a comparatively small part of the

total intake for the populations studied. The relatively low con-
sumption of chalcones and dihydrochalcones, isoflavones, an-
thocyanins, and stilbenes reflects the comparatively low con-
sumption of apples and ciders, soya products, dark berries and
red wines by these populations. The significant contributions
made by the hydroxycinnamates (in these populations primarily
reflecting coffee consumption [17], [18]) and derived polyphe-
nols (in these populations primarily reflecting black tea con-
sumption [79], [80], [81]) are striking. In this context “black tea”
refers to the beverage prepared from the fermented leaf (as dis-
tinct from green tea) and not to the addition or otherwise of milk
to the beverage prior to consumption. This domination by PPT
from black tea and coffee indicates the importance also of con-
sidering the hydroxycinnamates and derived polyphenols when-
ever assessing the dietary significance of PPT, and clearly shows
the limitations of looking only at flavonols and flavones after hy-
drolysis no matter how precise per se the data for these aglycones
might be.

It is important to stress that data for the composition of black tea
and coffee beverage reflect exactly what is consumed (with the
exception of the dregs left in the cup) since all transformations
associated with processing and domestic preparation have al-
ready taken place. Moreover, the NEODIET database is replete
with analytical data from numerous sources for the composition
of these beverages (thus better avoiding extreme values associat-
ed with any peculiarity of the material analysed or method of
analysis) compared with data for many fruits and vegetables. Ac-
cordingly, the estimated consumption figures obtained using
this database are likely to be more accurate than would have
been the case if solid foods were the major sources of PPT, and
data were for raw rather than after cooking/processing. This ar-

Table1 Mean dietary intakes of 14 classes of PPT as determined from diet-diaries and a food composition data base
PPT 103 UK females aged 20- 30 years® 50 UK males aged 27 - 57 years®
Estimated as conjugates Estimated as aglycones® Estimated as conjugates Estimated as aglycones®
Total, range 100-2300 30-2200
Total, mean 780 451 1058 598
Hydroxybenzoates 15 23
Hydroxycinnamates 353 176 670 335
Total flavonoids 210 105 205 103
Anthocyanins 5 9
Chalcones and dihydrochalcones 0.7
Flavanols 64 58
Flavanones 22 89
Flavones 72 17
Flavonols 35 26
Isoflavones 0.13
Proanthocyanidins 7 6
Ellagitannins 23
Derived polyphenols 170 170 160 160
Stilbenes 9
Lignans 0.04
2 Ref. [49].
b Ref. [50].

¢ Aglycones are estimated approximately by taking rutin as a representative flavonoid and 5-caffeoylquinic acid as a representative hydroxycinnamate and adjusting for the relevant molecular

masses.
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gument applies also to the data for PPT delivered by wines and
juices. Using this approach has led us to estimate typical mean
intakes of PPT for the two populations so far studied to be in the
range 450 to 600 mg as aglycones.

Absorption and Metabolism of PPT

Extensive studies in humans and animals have indicated that
some PPT can be absorbed in the small intestine, for example,
certain cinnamate conjugates [82], [83], flavanols [84] (that oc-
cur naturally as aglycones), and certain flavonoid glucosides
[85], [86] (but not the corresponding flavonoid rutinosides
[87]). The mechanisms of absorption have not been completely
elucidated but involve inter alia interaction of certain glucosides
with the active sugar transporter (SGIT1) and lumenal lactase-
phloridzin hydrolase, passive diffusion of the more hydrophobic
aglycones, and interaction with cytosolic B-glucosidase. Al-
though varying with PPT subclass and matrix, when expressed
relative to the total intake of PPT, only some 5 to 10% of the
amount consumed is absorbed at this site. The major part of
that absorbed (90 to 95% for every substance so far studied) en-
ters the circulation as mammalian conjugates produced by a
combination of methylation, sulphate conjugation, glucuronide
conjugation and, in the case of some phenolic acids, also by gly-
cine conjugation [29]. Only a very small amount of the total PPT
consumed, maximally 5 to 10%, enters the plasma unchanged.

The 90 to 95 % of the total PPT ingested, plus any mammalian glu-
curonides excreted through the bile, pass to the colon where they
are metabolised by the gut microflora. Transformations may be
extensive, and include the removal of sugars, removal of phenolic
hydroxyl groups, fission of aromatic rings, and metabolism to car-
bon dioxide, possibly via oxaloacetate [88]. A substantial range of
microbial metabolites has been identified, including phenols and
aromatic/phenolic acids/lactones possessing 0,1 or 2 phenolic hy-
droxyl groups and up to five carbons in the side chain [89], [90],
[91], [92], [93], [94], [95], [96], [97], [98], [99], [100], [101], [102],
[103], [104], [105], [106], [107], [108], [109], [110], [111].
Eubacterium is of particular interest since this species not only
metabolises dietary (poly)phenols [99], [100], [105], [106], [112],
[113],[114], [115], [116], but also produces butyrate [117], a preferr-
ed energy source for colonic epithelial cells thought to play an im-
portant role in maintaining colon health in humans. The yield of
phenolic/aromatic acids is variable (up tox10) between individ-
uals, but can be substantial (up to 50%) relative to the intake of
PPT substrates [95], [103], [104], [108], [109], [110].

There is evidence from cell culture studies that some of the aro-
matic/phenolic acids, e.g., benzoic, salicylic, p-coumaric and
ferulic acids, are transported actively by the monocarboxylate
transporter MCT1 [118],[119],[120], [121], [122]. A comparative-
ly small percentage of these microbial metabolites may even-
tually appear unchanged in plasma or urine but the majority is
subject to mammalian conjugation as described for intact PPT.

Table 2 summarises in a semi-quantitative manner so far as cur-
rent knowledge allows the fate of a “typical” daily consumption
of some 450 to 600 mg of PPT (as aglycones) previously defined
in Table 1.

Plasma Pseudo-Pharmacokinetics

Since for the majority of dietary PPT, neither the conjugates con-
sumed, nor their free aglycones, are detectable in plasma, it is
rarely possible to perform true pharmacokinetic analyses. Most
so-called pharmacokinetic data that have been published relate
to the concentrations of aglycones released after hydrolysis of
mammalian conjugates in plasma or urine with commercial -
glucuronidase and/or sulphatase, and the data so obtained are
better referred to as pseudo-pharmacokinetics. Published data
are summarised in Table 3. Although the maximum concentra-
tion achieved transiently varies to some extent with PPT subclass
and matrix in which consumed, it is unlikely that plasma meta-
bolite concentrations will routinely exceed 10 uM in total, and
approximately 1 uM for total aglycones. The reported Ty, values
range from 1 to 2.5 hours for substances absorbed in the duode-
num [85], [86], [87], [123], [124],[125],[126], [127], [128], [129],
[130], up to 5 to 12 hours when microbial metabolism is a prere-
quisite [87],[104], [131]. Elimination half-lives are very variable,
ranging from as low as 1 hour [132], [133] to values in excess of
20 hours [85], [6], [87]. The very low values may be artefacts of
observation periods being less than the true half-life, whereas
the very high values may be exaggerated because of a biphasic
elimination reflecting significant entero-hepatic circulation of
glucuronides. When studied explicitly, repeat dosing has failed
to provide evidence of accumulation in plasma suggesting that,
in general, significant elimination occurs in a time period shorter
than the interval between repeat doses [123].

Table 4 summarises the concentrations of a range of endogenous
(i.e., non-dietary) simple phenols, including o-tocopherol, and
ascorbate in plasma from healthy individuals. The total simple
phenol and ascorbate concentration is between 159 and

Table2 Fate of ingested PPT

Aglycones (mg)
Estimated mean daily consumption (from Table 1) 450-600
~ 5-10% of intake absorbed in duodenum and excreted in urine. Of this 22- 60
5-10% unchanged plant (poly)phenols, and <6

90-95% mammalian conjugates 20- 55
~90-95% fermented in colon (unabsorbed PPT+ enteric and entero-hepatic cycling of glucuronides, etc.) 400-570
Poorly-defined and very variable portion (5 to 50 %?) absorbed depending on individual’s flora and substrates.
Mainly mammalian conjugates of microbial metabolites 20-285
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Table3 Plasma pseudo-pharmacokinetics after consumption of normal portions of rich sources

PPT Subclass Cinax (M) unchanged® Cinax (NM) mammalian conjugates % urine excretion
Anthocyanins 10-150 traces N.D. - 0.1°
Flavanols, low fat 40-140 1000-2000 0.5-4.0
Flavanols, high fat 150-220 up to 6200 25-30
Flavonol glycosides Minute traces N.D.P 0.5-2.5
Flavonol aglycones Minute traces 350-1100

Flavanone glycosides Minute traces 120-1500 4-10
Isoflavone glycosides Minute traces 900-4000 20-55
Isoflavone aglycones 10-150 500-6500

Cinnamates & chlorogenic acids up to 120 up to 500 1-2
Phenolic gut flora metabolites 20-60 Up to 50
Hypothetical total if all consumed in one meal 250-780 2890-21660

3 Cnax = Maximum concentration achieved transiently in plasma.
bN.D. = not detected.

Table4 Plasma concentrations (uM) of endogenous (non-dietary)
phenols and other plasma antioxidants

Plasma concentration,

healthy individuals
Homogentisic acid 0.014-0.070°
p-Hydroxyphenyl lactate 40-90°
p-Hydroxyphenyl pyruvate 14-60°
Tyrosine 60-130b¢
Ascorbate 40-70de
a-Tocopherol 5-30f
Total endogenous phenols & antioxidants 159-380
Hypothetical total diet-derived phenols 3.1-22.49
Averaged over three meals gives a transient
increase of between 0.3 and 5%. =1-7.59

Many people consume much less

aRef. [201], b Ref. [202], < Ref. [203], ¢ Ref. [204], ¢ Ref. [205], { Ref. [206], 9 From Table 3

380 uM. The maximum additional concentration that is likely to
be achieved from dietary sources, 3 to 22 uM, is marginal by
comparison adding only between 0.3 and 5% if it is assumed,
quite reasonably, that the “typical” mean intake is taken over
three equal meals. Many people consume a much smaller quan-
tity of dietary PPT and even those consuming double the average
amount (450 to 600 mg aglycones) adopted in this paper will
only achieve a transient 5 to10% increase in total plasma antiox-
idant content.

Many investigators have attempted to demonstrate increases in
plasma antioxidant capability following the consumption of
foods, beverages or supplements rich in PPT. Table 5 summarises
the outcomes of 34 such studies [127], [130], [131], [132], [133],
[134], [135], [136], [137], [138], [139], [140], [141], [142], [143],
[144], [145], [146], [147], [148], [149], [150], [151], [152], [153],
[154],[155],[156],[157],[158], [159]. The test substances includ-
ed a range of fruit and vegetable products, including juices, al-
coholic beverages, tea, and chocolate. In view of the calculations
presented in Tables 3 and 4, it is perhaps not surprising that in-
creases in plasma antioxidant capacity were often undetectable,
and at best, small and transient. Moreover, in four studies that

produced increases in plasma antioxidant capability it could be
attributed, at least in part, to increased plasma ascorbate [149],
[156], [158].

In view of these observations, it is instructive also to consider the
redox potentials of PPT-derived mammalian metabolites that are
known to reach plasma, and to compare these with the cor-
responding values for the endogenous plasma antioxidants. The
polyphenols with the lowest redox potentials are flavonoids with
vicinal hydroxyl groups in the B-ring, and conjugation extending
to the A-ring, e.g., quercetin aglycone (330 mV at pH 7) [160]. If
the conjugation does not extend beyond the B-ring, then the re-
dox potential is significantly higher even for (-)-epigallocatechin
gallate (480 mV at pH 7) [161] with three vicinal hydroxyl
groups. The value rises again when there are only two vicinal hy-
droxyl groups {e.g., (+)-catechin 570 mV [162] or caffeic acid 540
mV [162]}, a single para hydroxyl group (e.g., hesperidin 720 mV
[162]) or isolated (meta) hydroxyl groups (e.g., resorcinol 810
mV [163]). These comparisons are extended to the endogenous
(non-dietary) plasma antioxidants in Table6. Fig.1 illustrates
the marked effects of mammalian and microbial metabolism on
the redox potential of PPT aglycones that are frequently exam-
ined in in vitro systems designed to demonstrate their potent an-
tioxidant properties. When the aglycones of such powerful anti-
oxidants are given intravenously to humans [164] or intraperito-
neally to animals [165], [166], thus circumventing the protection

Table5 The outcome of 34 studies® in which volunteers were given
foods, beverages or supplements rich in PPT and plasma was
analysed for total antioxidant activity

34 studies, (poly)phenol-rich diet compared with control
- 13 studies (3 high & 3 very high doses) showed no change in plasma
antioxidant status ex vivo

- 21 studies (8 low & 7 moderate doses) showed small and transient increases
in plasma antioxidant status ex vivo

- 1 showed reduction in plasma Vitamin E
- 1 showed reduction in plasma ascorbate and glutathione

3 Refs: [127], [130], [131], [132], [133], [134], [135], [136], [137], [138], [139], [140], [141],
[142], [143], [144], [145], [146], [147], [148], [149], [150], [151], [152], [153], [154], [155],
[156], [157], [158], [159].
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Table6 A summary of published data for transient maximal plasma concentrations of diet-derived (poly)phenols, typical plasma concentrations
of endogenous phenols and antioxidants, and associated redox potentials (pH 7)

Mammalian metabolite hydroxylation pattern

1,2,3-vic 0.142
1,2-vic 0.8°
Single para or isolated meta hydroxy groups 10°
Blocked/inactive ?

Damaging radicals

Hydroxyl radical

Superoxide radical anion

Alkoxyl radical

Alkyl-peroxyl radical

PUFA (bis-allylic) radical

Endogenous phenols and antioxidants in plasma

Endogenous p-phenols 114, 2802
o-Tocopherol 5-30
Ascorbate 50-70°
(depleted) (£11)¢
Glutathione

Maximal transient concentration (uM)

Typical plasma concentration (um)

Redox potential (mV) at pH 7
400-600%21
500- 65049
700 - 105099k

Inactive

Redox potential (mV) at pH 7

23100
1800h
1600'
1000 + 60M-m-
600"
Redox potential (mV) at pH 7
~ 700d,e,g,i,j,k
~500%
~280°h

- 276"

o

450 mV Inactive
440 mv 810 mv 930 mv Inactive
OH OH
e Q-0
OH OH . OH
) oH -~
\\ /,’
OCH;
OH

Fig.1 llustration of the effects of mammalian metabolism and mi-
crobial metabolism on the redox potential of (poly)phenols found in
plasma compared with their precursors in the diet and the aglycones
commonly used in in vitro studies.

offered by the gastric mucosa and Phase II conjugations, redox
cycling causes serious and possibly fatal liver and kidney dam-
age. One may conclude that it is better to avoid high plasma con-
centrations of the more potent PPT antioxidants (such as uncon-
jugated quercetin), and that it might be ill-advised grossly to
supplement normal diets with capsules and concentrates of
such potent antioxidants.

Table 6 indicates that the diet-derived PPT metabolites are able
thermodynamically to scavenge some or all of the damaging radi-
cals should they come into contact. However, these metabolites
are so hydrophilic {e.g., quercetin 3-glucuronide (K = 0.008)

Clifford MN. Diet-Derived Phenols in... Planta Med 2004; 70: 1103-1114
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[167], [168] compared with quercetin (K = 66) [167], [168] and
o-tocopherol (K = 550) [169]} that it is unlikely they will encoun-
ter lipid-derived radicals. However, any phenoxyl radicals gener-
ated will have to be removed either by transfer of the unpaired
electron to an endogenous scavenger such as o-tocopherol, ascor-
bate, glutathione or serum albumin, or by dismutation or dispro-
portionation although these latter mechanisms seem somewhat
unlikely in vivo because of the relatively low phenoxyl radical con-
centrations. The implied demand for o-tocopherol and ascorbate is
particularly interesting, since two of the supplementation studies
(Table 5) produced reductions in plasma ascorbate and o-toco-
pherol [150], and the major sources of dietary PPT identified from
the NEODIET database (coffee and black tea) supply neither. More-
over, it is known that for approximately 14% of the over-65 popu-
lation subgroup in the UK the mean plasma ascorbate value is be-
low 11 uM [170], indicating biochemical depletion [171], suggest-
ing that for heavy consumers of black tea or coffee within this pop-
ulation subgroup the transient concentration of PPT metabolites
may approach or even exceed plasma ascorbate.

From the data assembled, it is difficult to envisage how diet-de-
rived PPT metabolites can make a major contribution to radical
scavenging in plasma compared with the contribution to be ex-
pected from the endogenous antioxidants in healthy individuals
replete in ascorbate. It follows that if diets rich in fruits and vege-
tables are advantageous, at least in part, by virtue of their con-
tent of PPT then mechanisms other than radical scavenging are
implicated.

Protective Mechanisms other than Radical Scavenging

Although classically, mammalian conjugates of drugs are
viewed as biologically significantly less active than the parent
drug, this is not inevitably the case when PPT are considered.
Some quercetin conjugates are able to inhibit lipoxygenase
and xanthine oxidase. Quercetin 3-glucuronide, one of the
three major human conjugates of dietary quercetin glycosides,
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has been shown in vitro to protect the vascular endothelium
[172], [173] and suppresses peroxynitrite-induced consump-
tion of lipophilic antioxidants in human LDL [174]. Another hu-
man metabolite, quercetin 4’-glucuronide, inhibits xanthine
oxidase in vitro at a concentration in plasma that on normal
diets can realistically be approached (K; = 0.25 uM) [175]. As
these observations are more widely appreciated, and mamma-
lian metabolites become more readily available, it is quite pos-
sible that other biologically interesting properties will be iden-
tified for mammalian conjugates of PPT.

Effects occurring in the gastro-intestinal tract prior to absorp-
tion also deserve greater consideration. For example, there is a
growing body of evidence suggesting that diets rich in PPT may
influence the absorption and metabolism of glucose, resulting
in a lower glycaemic index [176] than would otherwise be ex-
pected. Red wine [177], coffee [178] and apple juice [179] have
all been shown in controlled volunteer studies to slow glucose
absorption and reduce the post-prandial surge in plasma glu-
cose, an event known to be an independent risk factor for CHD
[180]. Studies in which volunteers consumed normal portions
of PPT-rich foods [178] have also produced reductions in the
post-prandial concentrations of plasma insulin and glucose-de-
pendent insulinotropic polypeptide and elevation in the con-
centration of glucagon-like polypeptide-1. A prospective study
of 17,000 people suggested that the mean relative risk of devel-
oping Type II diabetes was only 0.5 (0.35-0.72) in those indi-
viduals habitually consuming six or more cups of coffee per
day compared with those consuming two or less (p = 0.0002)
[181], and a polyphenol-enriched diet has been reported to re-
duce the incidence and severity of nephropathy in Type II dia-
betics [182].

The reduced glycaemic index has been attributed to PPT-medi-
ated inhibition of a-amylase [183], [184], maltase [185] or o~glu-
cosidase (sucrase) [184], [186], but this mechanism would not
operate with preformed glucose as observed in our studies
[178], [179]. In studies using bolus doses of glucose, the observa-
tion is more conveniently explained by an effect on the active
glucose transporter (SGLT1) in the duodenum. Phloridzin, a dihy-
drochalcone glucoside characteristic of apples and apple products
[53], but now known to be more widely distributed [187], com-
petes for the active site both in vitro and in vivo when given intra-
peritoneally [188], [189], [190], [191]. Other dietary PPT [(-)-epi-
gallocatechin gallate, (-)-epigallocatechin and 5-caffeoylquinic
acid] have been shown in vitro to dissipate the sodium gradient es-
sential to the operation of SGLT1 [192], [193], and several querce-
tin glucosides have been shown to interact with it and thus to have
the potential to interfere in glucose transport [194], [195], [196],
[197], [198], [199], [200]. While these effects on glucose absorp-
tion and the associated hormones are modest, they have been
achieved in volunteers consuming sensible quantities of common
dietary components (as distinct from effects seen only in vitro
with high levels of PPT aglycones never seen in the diet). Such ef-
fects repeated daily, or even several times daily for say 30 years,
might in part explain the reduced incidence of chronic disease,
especially Type II diabetes and the metabolic syndrome, in later
life associated with diets rich in fruits and vegetables.

Conclusions

Evidence has been presented to indicate that very little of the di-
etary PPT consumed reaches human plasma, and that this transi-
ent fraction contains only weak antioxidants able to make little
contribution to the total antioxidant activity of the plasma. This
suggests that radical scavenging by PPT is unlikely to be the
mechanism by which diets rich in fruits and vegetables protect
against chronic diseases. Instead, it is proposed that modulation
of glucose absorption in the duodenum prior to the absorption of
PPT, with protection by PPT metabolites through mechanisms
other than radical scavenging, might over a lifetime offer modest
protection against chronic diseases, especially Type II diabetes
and the metabolic syndrome.
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