Aktuelle Neurologie 2005; 32(7): 402-417
DOI: 10.1055/s-2004-834707
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Differenzialdiagnose von Läsionen der weißen Hirnsubstanz in der Magnetresonanztomographie

White Matter Lesions: MRI for Differential DiagnosisW.  Küker1 , T.  Nägele2
  • 1Department of Neuroradiology, The Radcliffe Infirmary, Oxford
  • 2Abteilung für Neuroradiologie, Radiologische Universitätsklinik Tübingen
Further Information

Publication History

Publication Date:
29 August 2005 (online)

Zusammenfassung

Signalveränderungen des Marklagers sind häufig und ihre Interpretation ist eine Aufgabe, von der die weitere klinische Versorgung oft entscheidend abhängt. Die diagnostische Herausforderung ist dabei zunächst, den Krankheitswert einer Signalalteration in der Magnetresonanztomographie (MRT) zu erkennen. Aufgrund zahlreicher altersbedingter Veränderungen ist die Identifizierung wirklich pathologischer Veränderungen und ihre Abgrenzung gegen Zufallsbefunde (unknown bright objects UBO) teilweise schwierig. Die nächste Aufgabe besteht in der Zuordnung zu einer pathogenetischen Hauptgruppe, also vaskulär mikroangiopathischen Veränderungen, demyelinisierenden Erkrankungen, Neoplasien, metabolischen oder entzündlichen Schäden. Danach kann versucht werden, die Krankheit in dieser Gruppe näher zu spezifizieren. Als empfindlich/sensibelste Sequenzen zum Nachweis von Marklagerläsionen haben sich die T2-gewichteten Aufnahmen mit Liquorsignalunterdrückung (dark fluid, z. B. Flair) erwiesen. Sie sind die Basis der Diagnostik, da sie im Unterschied zu normalen T2-Sequenzen auch Läsionen an der Grenze zum Liquorraum erfassen. T1-gewichtete Sequenzen vor Kontrastmittelgabe korrelieren gut mit der Schädigungsschwere und können nach Kontrastmittelgabe die Krankheitsaktivität anzeigen. Der Nachweis von Mikroblutungen mit der T2*-gewichteten Bildgebung ist ein starkes Indiz für eine vaskuläre Erkrankung und korreliert mit einer erhöhten Blutungsneigung. Protonenspektroskopie, chemical shift imaging (CSI) und diffusionsgewichtete Bildgebung (DWI) haben bei bestimmten Fragestellungen einen hohen Stellenwert sowohl für die Differenzialdiagnostik wie für die Aktivitätsbeurteilung und sollten daher heute für die eingehende Analyse von Marklagerveränderungen zur Verfügung stehen.

Abstract

White matter signal changes in magnetic resonance imaging (MRI) are frequent and the correct clinical assessment is very important for the further clinical management of the patient. The first problem in the sequence of dealing with these patients is to determine, if a signal change is truly abnormal or a sign of normal aging. The abundance of unspecific signal changes in the brains of normal persons has lead to the creation of the term unknown bright objects (UBO) for these findings. If a white matter lesion is deemed truly abnormal, it should be categorised into one of the major categories such as microvascular, demyelinating, inflammatory, neoplastic or metabolic. Thereafter, a further classification can be attempted. The mainstay of the MRI diagnostics of white matter lesions are dark fluid T2-weighted sequences such as fluid attenuated inversion recovery (FLAIR). In contrast to conventional T2, these images maintain a high sensitivity for white matter damage in the vicinity of the CSF spaces. T1-weighted images prior to contrast administration have been shown to demonstrate the clinical significant lesion load whereas the contrast enhanced scan may aid in differential diagnosis and in the evaluation of lesion activity. T2*-weighted imaging is useful to identify previous microbleeds, which usually occur in microvascular conditions and portend the risk of further bleeding. Proton spectroscopy, chemical shift imaging and diffusion weighted imaging have been shown to be very useful in some entities of white matter disease, both for differential diagnosis and the assessment of disease activity. They should hence be part of any advanced imaging protocol in patients with white matter disease.

Literatur

  • 1 Hachinski V C, Potter P, Merskey H. Leuko-araiosis.  Arch Neurol. 1987;  44 21-23
  • 2 Fazekas F, Kleinert R, Roob G. et al . Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds.  AJNR Am J Neuroradiol. 1999;  20 637-642
  • 3 Henon H, Vroylandt P, Durieu I. et al . Leukoaraiosis more than dementia is a predictor of stroke recurrence.  Stroke. 2003;  34 2935-2940
  • 4 Moody D M, Thore C R, Anstrom J A. et al . Quantification of afferent vessels shows reduced brain vascular density in subjects with leukoaraiosis.  Radiology. 2004;  233 883-890
  • 5 Naka H, Nomura E, Wakabayashi S. et al . Frequency of asymptomatic microbleeds on T2*-weighted MR images of patients with recurrent stroke: association with combination of stroke subtypes and leukoaraiosis.  AJNR Am J Neuroradiol. 2004;  25 714-719
  • 6 Imaizumi T, Horita Y, Hashimoto Y. et al . Dotlike hemosiderin spots on T2*-weighted magnetic resonance imaging as a predictor of stroke recurrence: a prospective study.  J Neurosurg. 2004;  101 915-920
  • 7 Schmidt R, Scheltens P, Erkinjuntti T. et al . White matter lesion progression: a surrogate endpoint for trials in cerebral small-vessel disease.  Neurology. 2004;  63 139-144
  • 8 Walker D A, Broderick D F, Kotsenas A L. et al . Routine use of gradient-echo MRI to screen for cerebral amyloid angiopathy in elderly patients.  AJR Am J Roentgenol. 2004;  182 1547-1550
  • 9 Tsushima Y, Aoki J, Endo K. Brain microhemorrhages detected on T2*-weighted gradient-echo MR images.  AJNR Am J Neuroradiol. 2003;  24 88-96
  • 10 Greenberg S M, O'Donnell H C, Schaefer P W. et al . MRI detection of new hemorrhages: potential marker of progression in cerebral amyloid angiopathy.  Neurology. 1999;  53 1135-1138
  • 11 Dichgans M, Holtmannspotter M, Herzog J. et al . Cerebral microbleeds in CADASIL: a gradient-echo magnetic resonance imaging and autopsy study.  Stroke. 2002;  33 67-71
  • 12 Auer D P, Putz B, Gossl C. et al . Differential lesion patterns in CADASIL and sporadic subcortical arteriosclerotic encephalopathy: MR imaging study with statistical parametric group comparison.  Radiology. 2001;  218 443-451
  • 13 Boom R van den, Lesnik Oberstein S A, Ferrari M D. et al . Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: MR imaging findings at different ages - 3rd - 6th decades.  Radiology. 2003;  229 683-690
  • 14 Hassan A, Hunt B J, O'Sullivan M. et al . Homocysteine is a risk factor for cerebral small vessel disease, acting via endothelial dysfunction.  Brain. 2004;  127 212-219
  • 15 Lassmann H. Classification of demyelinating diseases at the interface between etiology and pathogenesis.  Curr Opin Neurol. 2001;  14 253-258
  • 16 McDonald W I, Compston A, Edan G. et al . Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis.  Ann Neurol. 2001;  50 121-127
  • 17 Miller D H, Grossman R I, Reingold S C. et al . The role of magnetic resonance techniques in understanding and managing multiple sclerosis.  Brain. 1998;  121 3-24
  • 18 Dalton C M, Brex P A, Miszkiel K A. et al . Application of the new McDonald criteria to patients with clinically isolated syndromes suggestive of multiple sclerosis.  Ann Neurol. 2002;  52 47-53
  • 19 Rovaris M, Comi G, Filippi M. The role of non-conventional MR techniques to study multiple sclerosis patients.  J Neurol Sci. 2001;  186 S3-9
  • 20 Mader I, Seeger U, Karitzky J. et al . Proton magnetic resonance spectroscopy with metabolite nulling reveals regional differences of macromolecules in normal human brain.  J Magn Reson Imaging. 2002;  16 538-546
  • 21 Mader I, Seeger U, Weissert R. et al . Proton MR spectroscopy with metabolite-nulling reveals elevated macromolecules in acute multiple sclerosis.  Brain. 2001;  124 953-961
  • 22 Vrenken H, Barkhof F, Uitdehaag B M. et al . MR spectroscopic evidence for glial increase but not for neuro-axonal damage in MS normal-appearing white matter.  Magn Reson Med. 2005;  53 256-266
  • 23 Caldemeyer K S, Smith R R, Harris T M. et al . MRI in acute disseminated encephalomyelitis.  Neuroradiology. 1994;  36 216-220
  • 24 Tenembaum S, Chamoles N, Fejerman N. Acute disseminated encephalomyelitis: A long-term follow-up study of 84 pediatric patients.  Neurology. 2002;  59 1224-1231
  • 25 Dale R C, Sousa C de, Chong W K. et al . Acute disseminated encephalomyelitis, multiphasic disseminated encephalomyelitis and multiple sclerosis in children.  Brain. 2000;  123 2407-2422
  • 26 Kesselring J, Miller D H, Robb S A. et al . Acute disseminated encephalomyelitis. MRI findings and the distinction from multiple sclerosis.  Brain. 1990;  113 291-302
  • 27 Mader I, Wolff M, Niemann G. et al . Acute haemorrhagic encephalomyelitis (AHEM): MRI findings.  Neuropediatrics. 2004;  35 143-146
  • 28 Heyman D, Delhaye M, Fournier D. et al . Pseudotumoral demyelination: a diagnosis pitfall (report of three cases).  J Neurooncol. 2001;  54 71-76
  • 29 Berger J R, Major E O. Progressive multifocal leukoencephalopathy.  Semin Neurol. 1999;  19 193-200
  • 30 Mader I, Herrlinger U, Klose U. et al . Progressive multifocal leukoencephalopathy: analysis of lesion development with diffusion-weighted MRI.  Neuroradiology. 2003;  45 717-721
  • 31 Antinori A, Ammassari A, Luca A De. et al . Diagnosis of AIDS-related focal brain lesions: a decision-making analysis based on clinical and neuroradiologic characteristics combined with polymerase chain reaction assays in CSF.  Neurology. 1997;  48 687-694
  • 32 Malcolm P N, Howlett D C, Saks A. et al . MRI of the brain in HIV-positive patients: what is the value of routine intravenous contrast medium?.  Neuroradiology. 1999;  41 687-695
  • 33 Knaap M S van der, Vermeulen G, Barkhof F. et al . Pattern of white matter abnormalities at MR imaging: use of polymerase chain reaction testing of Guthrie cards to link pattern with congenital cytomegalovirus infection.  Radiology. 2004;  230 529-536
  • 34 Eichler F S, Itoh R, Barker P B. et al . Proton MR spectroscopic and diffusion tensor brain MR imaging in X-linked adrenoleukodystrophy: initial experience.  Radiology. 2002;  225 245-252
  • 35 Loes D J, Fatemi A, Melhem E R. et al . Analysis of MRI patterns aids prediction of progression in X-linked adrenoleukodystrophy.  Neurology. 2003;  61 369-374
  • 36 D'Incerti L. MRI in neuronal ceroid lipofuscinosis.  Neurol Sci. 2000;  21 S71-73
  • 37 Callagy C, O'Neill G, Murphy S F. et al . Adult neuronal ceroid lipofuscinosis (Kufs' disease) in two siblings of an Irish family.  Clin Neuropathol. 2000;  19 109-118
  • 38 Herrlinger U, Felsberg J, Kuker W. et al . Gliomatosis cerebri: molecular pathology and clinical course.  Ann Neurol. 2002;  52 390-399
  • 39 Ayuso-Peralta L, Orti-Pareja M, Zurdo-Hernandez M. et al . Cerebral lymphoma presenting as a leukoencephalopathy.  J Neurol Neurosurg Psychiatry. 2001;  71 243-246
  • 40 Moulignier A, Galicier L, Mikol J. et al . Primary cerebral lymphoma presenting as diffuse leukoencephalopathy.  Aids. 2003;  17 1111-1113
  • 41 Bühring U, Herrlinger U, Krings T. et al . MRI features of primary central nervous system lymphomas (PCNSL) at presentation.  Neurology. 2001;  57 393-396
  • 42 Gowan G M, Herrington J D, Simonetta A B. Methotrexate-induced toxic leukoencephalopathy.  Pharmacotherapy. 2002;  22 1183-1187
  • 43 DeAngelis L M. Primary CNS lymphoma: treatment with combined chemotherapy and radiotherapy.  J Neurooncol. 1999;  43 249-257
  • 44 Lai R, Abrey L E, Rosenblum M K. et al . Treatment-induced leukoencephalopathy in primary CNS lymphoma: a clinical and autopsy study.  Neurology. 2004;  62 451-456
  • 45 Levy A S, Meyers P, Kellick M. et al . Acute stroke-like encephalopathy associated with high-dose methotrexate impurities.  J Pediatr Hematol Oncol. 2000;  22 360-362
  • 46 Lee A C, Li C H, Wong Y C. Transient encephalopathy following high-dose methotrexate.  Med Pediatr Oncol. 2003;  41 101
  • 47 Hinchey J, Chaves C, Appingnani B. et al . A reversible posterior leukoencephalopathy syndrome.  N Engl J Med. 1996;  334 494-500
  • 48 Sanchez-Carpintero R, Narbona J, Lopez de Mesa R. et al . Transient posterior encephalopathy induced by chemotherapy in children.  Pediatr Neurol. 2001;  24 145-148
  • 49 Hauser R A, Lacey D M, Knight M R. Hypertensive encephalopathy.  Arch Neurol. 1988;  45 1078-1083
  • 50 Schwartz R B, Jones K M, Kalina P. et al . Hypertensive encephalopathy: findings on CT, MR imaging and SPECT imaging in 14 cases.  Am J Radiol. 1992;  159 379-383
  • 51 Duncan R, Hadley D, Bone I. et al . Blindness in eclampsia: CT and MR imaging.  J Neurol Neurosurg Psychiatry. 1989;  52 899-902
  • 52 Jurgensen J S, Nibbe L, Hoffmann K T. et al . Postpartum blindness.  Lancet. 2001;  358 1338
  • 53 Friese S, Fetter M, Kuker W. Extensive brainstem edema in eclampsia: diffusion-weighted MRI may indicate a favorable prognosis.  J Neurol. 2000;  247 465-466
  • 54 Schaefer P W, Buonanno F S, Gonzales R G. et al . Diffusion-weighted imaging discriminates between cytotoxic and vasogenic edema in a patient with eclampsia.  Stroke. 1997;  28 1082-1085

Dr. Wilhelm Küker

Consultant Neuroradiologist · Department of Neuroradiology · The Radcliffe Infirmary

Woodstock Road

Oxford

OX2 6HE

United Kingdom

Email: Wilhelm.Kueker@orh.nhs.uk

    >