Synlett 2004(11): 2022-2024  
DOI: 10.1055/s-2004-830880
LETTER
© Georg Thieme Verlag Stuttgart · New York

Rhodium-Catalysed 1,4-Additions in Water: Synthesis of Succinic Esters and β2-Amino Acid Derivatives

Kelly J. Wadsworth, Frances K. Wood, Christopher J. Chapman, Christopher G. Frost*
Department of Chemistry, University of Bath, Claverton down, Bath, BA2 7AY, UK
Fax: +44(1225)386231; e-Mail: c.g.frost@bath.ac.uk;
Further Information

Publication History

Received 5 April 2004
Publication Date:
06 August 2004 (online)

Abstract

The rhodium-catalysed addition of boronic acids to α-substituted activated alkenes proceeds smoothly in water resulting in a unique synthesis of both succinic esters and β2-amino acid ­derivatives.

    References

  • For detailed reviews, see:
  • 1a Fagnou K. Lautens M. Chem. Rev.  2003,  103:  169 
  • 1b Hayashi T. Yamasaki K. Chem. Rev.  2003,  103:  2829 
  • 2a Itooka R. Iguchi Y. Miyaura N. Chem. Lett.  2001,  722 
  • 2b Lautens M. Roy A. Fukouka K. Fagnou K. Martin-Matute B. J. Am. Chem. Soc.  2001,  123:  5538 
  • 3a Chapman CJ. Frost CG. Adv. Synth. Catal.  2003,  345:  353 
  • 3b For related work with organotin and bismuth reagents see: Huang T.-S. Li C.-J. Org. Lett.  2001,  3:  2037 
  • 3c For recent work with potassium trifluoro(organo)borates see: Navarre L. Darse S. Genet J.-P. Eur. J. Org. Chem.  2004,  69 
  • 4a Fournie-Zaluski MC. Coulaud A. Bouboutou R. Chaillet P. Devin J. Waksman G. Costentin J. Roques BP. J. Med. Chem.  1985,  28:  1158 
  • 4b Moore WM. Spilburg CA. Biochemistry  1986,  25:  5189 
  • 4c Buhlmayer P. Caselli A. Fuhrer W. Goschke R. Rasetti V. Rueger H. Stanton JL. Criscione L. Wood JM. J. Med. Chem.  1988,  31:  1839 
  • 4d Iizuka K. Mamijo T. Kubota T. Akahane K. Umeyama H. Koso Y. J. Med. Chem.  1988,  31:  704 
  • 4e Harada H. Yamaguchi T. Iyobe A. Tsubaki A. Kamijo T. Iizuka K. Ogura K. Kiso Y. J. Org. Chem.  1990,  55:  1679 
  • 4f Morimoto T. Chiba M. Achiwa K. Tetrahedron Lett.  1990,  31:  261 
  • 4g Heitsch H. Henning R. Kleemann H.-W. Linz W. Nickel W.-U. Ruppert D. Urbach H. Wagner A. J. Med. Chem.  1993,  36:  2788 
  • 4h Juaristi E. Lopez-Ruiz H. Curr. Med. Chem.  1999,  6:  983 
  • 5 Burk MJ. Bienewald F. Harris M. Zanotti-Gerosa A. Angew. Chem. Int. Ed.  1998,  37:  1931 
  • For selected recent examples of β2-amino acid synthesis see:
  • 7a Duursma A. Minaard AJ. Feringa BL. J. Am. Chem. Soc.  2003,  125:  3700 
  • 7b Lee H.-S. Park J.-S. Kim BM. Gellman SH. J. Org. Chem.  2003,  68:  1575 
  • 7c Seebach D. Schaeffer L. Gessier F. Bindschädler P. Jäger C. Josien D. Kopp S. Lelais G. Mahajan YR. Micuch P. Sebesta R. Schweizer BW. Helv. Chim. Acta  2003,  86:  1852 
  • 7d Sibi MP. Patil K. Angew. Chem. Int. Ed.  2004,  43:  1235 
  • 8 Basavaiah D. Krishnamacharyulu M. Rao J. Synth. Commun.  2000,  30:  2061 
  • 10 Calmes M. Daunis J. Mai N. Tetrahedron: Asymmetry  1997,  1641 
  • 11 Hayashi T. Takahashi M. Takaya Y. Ogasawara M. J. Am. Chem. Soc.  2002,  124:  5052 
  • For examples of enantioselective additions to α,β-dehydroamino acid derivatives, see:
  • 12a Reetz MT. Moulin D. Gosburg A. Org. Lett.  2001,  3:  4083 
  • 12b Chapman CJ. Wadsworth KJ. Frost CG. J. Organomet. Chem.  2003,  680:  206 
  • 12c Navarre L. Darses S. Genet J.-P. Angew. Chem. Int. Ed.  2004,  43:  719 
  • 13 Dixon JA. Neiswender DD. J. Org. Chem.  1960,  25:  499 
6

All compounds have been satisfactorily characterised by 1H NMR and 13C NMR. 1H NMR data (300 MHz, CDCl3) for 3a: δ = 2.34 (1 H, dd, J = 4.8, 16.8 Hz), 2.66 (2 H, m), 3.03 (2 H, m), 3.57 (3 H, s), 3.60 (3 H, s), 7.16 (5 H, m). Compound 3c: 1H NMR (300 MHz, CDCl3): δ = 2.39 (1 H, dd, J = 5.7, 17.1 Hz), 2.65 (1 H, dd, J = 8.7, 17.1 Hz), 2.88 (1 H, dd, J = 10.5, 16.8 Hz), 3.09 (2 H, m), 3.57 (3 H, s), 3.60 (3 H, s), 7.42 (2 H, m), 8.01 (2 H, m). Compound 3d: 1H NMR (300 MHz, CDCl3): δ = 2.33 (1 H, dd, J = 5.1, 16.8 Hz), 2.61 (2 H, m), 2.98 (2 H, m), 3.57 (3 H, s), 3.60 (3 H, s), 3.72 (3 H, s), 6.76 (2 H, d, J = 8.7 Hz), 7.00 (1 H, d, J = 8.7 Hz). Compound 3e: 1H NMR (300 MHz, CDCl3): δ = 2.34 (1 H, dd, J = 4.5, 16.5 Hz), 2.62 (2 H, m), 3.02 (2 H, m), 3.57 (3 H, s), 3.62 (3 H, s), 3.72 (3 H, s), 6.67 (3 H, m), 7.15 (1 H, dd, J = 9.6, 17.4 Hz). Compound 3f: 1H NMR (300 MHz, CDCl3): δ = 2.33 (1 H, dd, J = 4.8, 17.1 Hz), 2.66 (2 H, m), 2.97 (1 H, dd, J = 6.3, 13.2 Hz), 3.14 (1 H, m), 3.55 (3 H, s), 3.59 (3 H, s), 3.75 (3 H, s), 6.79 (2 H, m), 7.00 (1 H, d, J = 9.0 Hz), 7.15 (2 H, m). Compound 3g: 1H NMR (300 MHz, CDCl3): δ = 2.35 (1 H, dd, J = 5.1, 16.8 Hz), 2.63 (2 H, dd, J = 8.4, 16.8 Hz), 2.78 (2 H, dd, J = 7.5, 12.9 Hz), 3.07 (2 H, m), 3.58 (3 H, s), 3.59 (3 H, s), 7.19 (2 H, d, J = 8.4 Hz), 7.83 (2 H, d, J = 8.1 Hz). Compound 3h: 1H NMR (300 MHz, CDCl3): δ = 2.33 (1 H, dd, J = 4.8, 16.8 Hz), 2.58 (2 H, m), 2.85 (6 H, s), 2.99 (2 H, m), 3.56 (3 H, s), 3.61 (3 H, s), 6.60 (2 H, d, J = 8.7 Hz), 6.95 (2 H, d, J = 8.7 Hz). Compound 3i: 1H NMR (300 MHz, CDCl3): δ = 2.32 (3 H, m), 2.64 (1 H, dd, J = 8.7, 16.5 Hz), 2.91 (1 H, m), 3.58 (3 H, s), 3.63 (3 H, s), 6.00 (1 H, m), 6.30 (1 H, d, J = 15.6 Hz), 7.19 (4 H, s).

9

All compounds have been satisfactorily characterised by 1H NMR and 13C NMR. 1H NMR data (300 MHz, CDCl3) for 5a: δ = 2.85 (1 H, dd, J = 6.6, 14.1 Hz), 3.10 (1 H, dd, J = 8.7, 14.1 Hz), 3.35 (1 H, m), 3.85 (1 H, dd, J = 6.0, 13.8 Hz), 4.05 (1 H, dd, J = 8.4, 13.8 Hz), 5.00 (2 H, s), 7.10-7.25 (10 H, m), 7.67 (2 H, m), 7.78 (2 H, m). Compound 5b: 1H NMR (300 MHz, CDCl3): δ = 3.36 (1 H, m), 3.50 (2 H, m), 3.95 (1 H, dd, J = 4.8, 13.8 Hz), 4.15 (1 H, dd, J = 7.8, 13.8 Hz), 4.95 (2 H, s), 7.05 (2 H, dd, J = 1.7, 7.7 Hz), 7.15 (2 H, m,), 7.30 (3 H, m), 7.45 (2 H, m), 7.60-7.88 (6 H, m), 8.00 (1 H, d, J = 8.4 Hz). Compound 5c: 1H NMR (300 MHz, CDCl3): δ = 3.00 (1 H, dd, J = 5.9, 14.0 Hz), 3.15 (1 H, dd, J = 9.2, 14.0 Hz), 3.35 (1 H, m), 3.90 (1 H, dd, J = 6.0, 13.8 Hz), 4.08 (1 H, dd, J = 7.8, 13.8 Hz), 5.00 (2 H, s), 7.15 (2 H, m), 7.25 (3 H, m), 7.35 (1 H, m), 7.50 (1 H, d, J = 7.8 Hz), 7.70 (2 H, m), 7.85 (2 H, m), 8.00 (1 H, d, J = 8.1 Hz), 8.05 (1 H, s). Compound 5d: 1H NMR (300 MHz, CDCl3): δ 2.80 (1 H, dd, J = 6.6, 13.8 Hz), 3.00 (1 H, dd, J = 8.6, 14.0 Hz), 3.30 (1 H, m), 3.75 (3 H, s), 3.85 (1 H, dd, J = 6.0, 13.8 Hz), 4.05 (1 H, dd, J = 8.3, 13.7 Hz), 5.00 (2 H, s), 6.75 (2 H, d, J = 8.7 Hz), 7.05 (2 H, d, J = 8.7 Hz), 7.15 (2 H, m), 7.23 (3 H, m), 7.68 (2 H, m), 7.78 (2 H, m). Compound 5g: 1H NMR (300 MHz, CDCl3): δ = 2.55 (3 H, s), 2.95 (1 H, dd, J = 6.3, 14.1 Hz), 3.15 (1 H, dd, J = 8.7, 14.1 Hz), 3.35 (1 H, m), 3.90 (1 H, dd, J = 6.2, 14.0 Hz), 4.05 (1 H, dd, J = 8.1, 13.8 Hz), 5.00 (2 H, s), 7.15 (2 H, m), 7.18-7.28 (5 H, m), 7.70 (2 H, m), 7.78 (4 H, m). Compound 5j: 1H NMR (300 MHz, CDCl3): δ = 2.80 (1 H, dd, J = 6.5, 14.0 Hz), 3.00 (1 H, dd, J = 9.0, 14.1 Hz), 3.30 (1 H, m), 3.90 (1 H, dd, J = 6.3, 13.8 Hz), 4.05 (1 H, dd, J = 8.1, 13.8 Hz), 5.00 (2 H, s), 7.05 (2 H, d, J = 8.4 Hz), 7.15 (2 H, m), 7.23 (3 H, m), 7.29 (2 H, d, J = 8.4 Hz), 7.70 (2 H, m), 7.80 (2 H, m).