Exp Clin Endocrinol Diabetes 2005; 113(1): 21-30
DOI: 10.1055/s-2004-830517
Article

J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Signal Transduction Mediating Gene Expression of SP1, LHβ-Subunit and GH in Response to GnRH or GHRH in the Postnatal and Fetal Porcine Anterior Pituitary in Vitro

J. Zeng1 , P. Aldag1 , F. Elsaesser1
  • 1Federal Agricultural Research Centre (FAL), Institute for Animal Breeding, Mariensee, Neustadt, Germany
Further Information

Publication History

Received: November 20, 2003 First decision: February 16, 2004

Accepted: May 17, 2004

Publication Date:
21 January 2005 (online)

Abstract

To clarify signal transduction pathways mediating putative gene expression of transcription factor SP1 (selective promoter factor 1 or specificity protein 1) by GnRH or GHRH porcine anterior pituitary monolayer cultures were exposed for various time periods to GnRH, GHRH, activators of adenylate cyclase (AC) or proteinkinase C (PKC), and mRNA levels of SP1, LHβ-subunit, and GH were determined by multiplex RT-PCR. In many experiments LH and GH release were measured as well for comparison. Another approach was to inactivate AC, PKC, or proteinkinase A (PKA) by specific inhibitors, MDL, GFX, and H89, respectively.

Postnatally (4 weeks) SP1 mRNA level was maximally increased by GnRH, GHRH and both by activation of AC or PKC after 2 h of exposure. Two-hour stimulation of SP1 mRNA levels by dbcAMP was totally blocked by H89, while this inhibitor not clearly blocked GHRH stimulated SP1 mRNA levels. Stimulation of LHβ mRNA by GnRH was suppressed by inactivation of AC or of PKC but not by inactivation of PKA. Inactivation of AC or PKA but not of PKC inhibited GHRH induced GH mRNA. Already at day 50 of fetal life (and likewise day 80) SP1 mRNA levels were stimulated by GHRH or activation of AC, but not by GnRH or activation of PKC.

The results are consistent with the notion that SP1 plays an important role 1) in conferring GnRH responsiveness to the LHβ-subunit gene by mediating the actions of both AC and PKC and 2) in conferring GHRH responsiveness to the GH gene through activation of the AC probably PKA pathway. Furthermore, the data are in line with the view that the GHRH/AC/SP1/GH pathway develops earlier during fetal life than the GnRH/PKC/SP1/LHβ pathway.

References

  • 1 Andrews W V, Maurer R A, Conn P M. Stimulation of rat luteinizing hormone-beta messenger RNA levels by gonadotropin releasing hormone. Apparent role for protein kinase C.  J Biol Chem. 1988;  263 13755-13761
  • 2 Barinaga M, Bilezikjian L M, Vale W W, Rosenfeld M G, Evans R M. Independent effects of growth hormone releasing factor on growth hormone release and gene transcription.  Nature. 1985;  314 279-281
  • 3 Borgeat P, Chavancy G, Dupont A, Labrie F, Arimura A, Schally A V. Stimulation of adenosine 3′, 5′-cyclic monophosphate accumulation in anterior pituitary gland in vitro by synthetic luteinizing hormone-releasing hormone.  Proc Natl Acad Sci USA. 1972;  69 2677-2681
  • 4 Cao X, Mahendran R, Guy G R, Tan Y H. Detection and characterization of cellular EGR-1 binding to its recognition site.  J Biol Chem. 1993;  268 16949-16957
  • 5 Chung H O, Kato T, Kato Y. Molecular cloning of c-jun and c-fos cDNAs from porcine anterior pituitary and their involvement in gonadotropin-releasing hormone stimulation.  Mol Cell Endocrinol. 1996;  119 75-82
  • 6 Chung H O, Kato T, Tomizawa K, Kato Y. Molecular cloning of pit-1 cDNA from porcine anterior pituitary and its involvement in pituitary stimulation by growth hormone-releasing factor.  Exp Clin Endocrinol Diab. 1998;  106 203-210
  • 7 Clayton R N, Lalloz M R, Salton S R, Roberts J L. Expression of luteinising hormone-beta subunit chloramphenicol acetyltransferase (LH-beta-CAT) fusion gene in rat pituitary cells: induction by cyclic 3′-adenosine monophosphate (cAMP).  Mol Cell Endocrinol. 1991;  80 193-202
  • 8 Dalkin A C, Haisenleder D J, Ortolano G A, Ellis T R, Marshall J C. The frequency of gonadotropin-releasing-hormone stimulation differentially regulates gonadotropin subunit messenger ribonucleic acid expression.  Endocrinology. 1989;  125 917-924
  • 9 de Rooij J, Zwartkruis F J, Verheijen M H, Cool R H, Nijman S M, Wittinghofer A, Bos J L. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP.  Nature. 1998;  396 474-477
  • 10 Dorn C, Ou Q, Svaren J, Crawford P A, Sadovsky Y. Activation of luteinizing hormone beta gene by gonadotropin-releasing hormone requires the synergy of early growth response-1 and steroidogenic factor-1.  J Biol Chem. 1999;  274 13870-13876
  • 11 Elsaesser F. Stimulation of porcine pituitary luteinizing hormone release by galanin: putative auto/paracrine regulation.  Neuroendocrinology. 2001;  74 288-299
  • 12 Elsaesser F, Bruhn T O, Parvizi N. Ontogeny of pituitary gonadotrophin secretion in the fetal and post-natal pig in response to GnRH in vitro.  J Reprod Fert. 1988;  82 71-80
  • 13 Elsaesser F, Granz S, Torronteras R. Ontogeny and control of growth hormone gene expression and secretion in the fetal pig.  Reprod Dom Anim. 1995;  30 163-169
  • 14 Granz S, Ellendorff F, Grossmann R, Kato Y, Mühlbauer E, Elsaesser F. Ontogeny of growth hormone and LH beta-, FSH beta- and alpha-subunit mRNA levels in the porcine fetal and neonatal anterior pituitary.  J Neuroendocrinology. 1997;  9 439-449
  • 15 Haisenleder D J, Ortolano G A, Yasin M, Dalkin A C, Marshall J C. Regulation of gonadotropin subunit messenger ribonucleic acid expression by gonadotropin-releasing hormone pulse amplitude in vitro.  Endocrinology. 1993 a;  132 1292-1296
  • 16 Haisenleder D J, Yasin M, Yasin A, Marshall J C. Regulation of prolactin, thyrotropin subunit, and gonadotropin subunit gene expression by pulsatile or continuous calcium signals.  Endocrinology. 1993 b;  133 2055-2061
  • 17 Halvorson L M, Kaiser U B, Chin W W. Stimulation of luteinizing hormone beta gene promoter activity by the orphan nuclear receptor, steroidogenic factor-1.  J Biol Chem. 1996;  271 6645-6650
  • 18 Halvorson L M. Transcriptional regulation of the LH beta gene by gonadotropin-releasing hormone and the protein kinase C system.  Vitam Horm. 2000;  60 195-227
  • 19 Houben H, Denef C. Bioactive peptides in anterior pituitary cells.  Peptides. 1994;  15 547-582
  • 20 Ingraham H A, Lala D S, Ikeda Y, Luo X, Shen W H, Nachtigal M W, Abbud R, Nilson J H, Parker K L. The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis.  Genes Dev. 1994;  8 2302-2312
  • 21 Ishizaka K, Kitahara S, Oshima H, Troen P, Attardi B, Winters S J. Effect of gonadotropin-releasing hormone pulse frequency on gonadotropin secretion and subunit messenger ribonucleic acids in perifused pituitary cells.  Endocrinology. 1992;  130 1467-1474
  • 22 Ishizaka K, Tsujii T, Winters S J. Evidence for a role for the cyclic adenosine 3′, 5′-monophosphate/protein kinase-A pathway in regulation of the gonadotropin subunit messenger ribonucleic acids.  Endocrinology. 1993;  133 2040-2048
  • 23 Kaiser U B, Conn P M, Chin W W. Studies of gonadotropin-releasing hormone (GnRH) action using GnRH receptor-expressing pituitary cell lines.  Endocr Rev. 1997;  18 46-70
  • 24 Kaiser U B, Halvorson L M, Chen M T. SP1, steroidogenic factor 1 (SF-1), and early growth response protein 1 (egr-1) binding sites form a tripartite gonadotropin-releasing hormone response element in the rat luteinizing hormone-beta gene promoter: an integral role for SF-1.  Mol Endocrinol. 2000;  14 1235-1245
  • 25 Kaiser U B, Sabbagh E, Chen M T, Chin W W, Saunders B D. SP1 binds to the rat luteinizing hormone beta (LHbeta) gene promoter and mediates gonadotropin-releasing hormone-stimulated expression of the LHbeta subunit gene.  J Biol Chem. 1998;  273 12943-12951
  • 26 Klindt J, Stone R T. Porcine growth hormone and prolactin: concentrations in the fetus and secretory patterns in the growing pig.  Growth. 1984;  48 1-15
  • 27 Liu B, Mortrud M, Low M J. DNA elements with AT-rich core sequences direct pituitary cell-specific expression of the pro-opiomelanocortin gene in transgenic mice.  Biochem J. 1995;  312 827-832
  • 28 Matsubara S, Sato M, Ohye H, Murao K, Takahara J. Quantitative analysis of growth hormone (GH) pre-mRNA expression in cultured rat anterior pituitary cells by an intron-specific and competitive PCR method.  Endocrinology. 1997;  138 5075-5078
  • 29 Maya-Nunez G, Conn P M. Cyclic adenosine 3′, 5′-monophosphate (cAMP) and cAMP responsive element-binding protein are involved in the transcriptional regulation of gonadotropin-releasing hormone (GnRH) receptor by GnRH and mitogen-activated protein kinase signal transduction pathway in GGH (3) cells.  Biol Reprod. 2001;  65 561-567
  • 30 Naor Z, Harris D, Shacham S. Mechanism of GnRH receptor signaling: combinatorial cross-talk of Ca2+ and protein kinase C.  Front Neuroendocrinol. 1998;  19 1-19
  • 31 Nicolas M, Noe V, Jensen K B, Ciudad C J. Cloning and characterization of the 5′-flanking region of the human transcription factor SP1 gene.  J Biol Chem. 2001;  276 22126-22132
  • 32 Pombo M, Pombo C M, Garcia A, Caminos E, Gualillo O, Alvarez C V, Casanueva F F, Dieguez C. Hormonal control of growth hormone secretion.  Horm Res. 2001;  1 11-16
  • 33 Reinhart J, Xiao S, Arora K K, Catt K J. Structural organization and characterization of the promoter region of the rat gonadotropin-releasing hormone receptor gene.  Mol Cell Endocrinol. 1997;  130 1-12
  • 34 Rousseau G G. Growth hormone gene regulation by trans-acting factors.  Horm Res. 1992;  37 88-92
  • 35 Serpek B, Elsaesser F, Meyer H HD. Development of an enzyme immunoassay for the determination of porcine growth hormone in plasma.  Analyt Chim Acta. 1993;  275 183-187
  • 36 Shacham S, Harris D, Ben-Shlomo H, Cohen I, Bonfil D, Przedecki F, Levy H, Ashkenazi I E, Seger R, Naor Z. Mechanism of GnRH receptor signaling on gonadotropin release and gene expression in pituitary gonadotrophs.  Vitam Horm. 2001;  63 63-90
  • 37 Shupnik M A, Weinmann C M, Notides A C, Chin W W. An upstream region of the rat luteinizing hormone beta gene binds estrogen receptor and confers estrogen responsiveness.  J Biol Chem. 1989;  264 80-86
  • 38 Soto J L, Castrillo J L, Dominguez F, Dieguez C. Regulation of the pituitary-specific transcription factor GHF-1/Pit-1 messenger ribonucleic acid levels by growth hormone-secretagogues in rat anterior pituitary cells in monolayer culture.  Endocrinology. 1995;  136 3863-3870
  • 39 Theill L E, Karin M. Transcriptional control of GH expression and anterior pituitary development.  Endocr Rev. 1993;  14 670-689
  • 40 Tremblay J J, Drouin J. Egr-1 is a downstream effector of GnRH and synergizes by direct interaction with Ptx1 and SF-1 to enhance luteinizing hormone beta gene transcription.  Mol Cell Biology. 1999;  19 2567-2576
  • 41 Weck J, Anderson A C, Jenkins S, Fallest P C, Shupnik M A. Divergent and composite gonadotropin-releasing hormone-responsive elements in the rat luteinizing hormone subunit genes.  Mol Endocrinol. 2000;  14 472-485
  • 42 Weiss J, Jameson J L, Burrin J M, Crowley Jr W F. Divergent responses of gonadotropin subunit messenger RNAs to continous versus pulsatile gonadotropin-releasing hormone in vitro.  Mol Endocrinol. 1990;  4 557-564
  • 43 Wu D, Clarke I J, Chen C. The role of protein kinase C in GH secretion induced by GH-releasing factor and GH-releasing peptides in cultured ovine somatotrophs.  J Endocrinol. 1997;  154 219-230
  • 44 Zheng X L, Matsubara S, Diao C, Hollenberg M D, Wong N C. Activation of apolipoprotein AI gene expression by protein kinase A and kinase C through transcription factor, SP1.  J Biol Chem. 2000;  275 31747-31754

Dr. F. Elsaesser

Institut für Tierzucht (FAL) Mariensee

Höltystraße 10

31535 Neustadt

Germany

Phone: + 49(0)5034871160

Fax: + 49 (0) 50 34 87 11 43

Email: elsaesser@tzv.fal.de

    >