Minim Invasive Neurosurg 2005; 48(3): 142-148
DOI: 10.1055/s-2004-830266
Original Article
© Georg Thieme Verlag Stuttgart · New York

Gliosarcoma Cell Death After Radiosurgery in a Rat Model

T.  G.  Psarros1 , B.  Mickey1 , J.  Gilio1 , J.  Drees1 , K.  Gall1 , D.  Carlson2 , C.  Giller1 , M.  S.  Willis2, 3
  • 1Department of Neurosurgery, University of Texas Southwestern, Dallas, Texas, USA
  • 2Department of Surgery, University of Texas Southwestern, Dallas, Texas, USA
  • 3Department of Pathology, University of Texas Southwestern, Dallas, Texas, USA
Further Information

Publication History

Publication Date:
13 July 2005 (online)

Abstract

Therapeutic radiation and subsequent detection of tumor cell death has been performed mainly in vitro systems, making it difficult to accurately characterize the mechanisms of tumor cell death after radiosurgery. To better characterize what occurs to glioma cells after radiation therapy, we developed a rat model using the 9L gliosarcoma cell line implanted reproducibly to the caudate nucleus in rats. After 1 Gy radiation, 9L tumors in vivo induced mainly necrosis (determined by trypan blue exclusion) of 10 - 74 % at 6 - 72 hours post-radiation. This is in contrast to a previous in vitro study which demonstrated that 18 Gy of radiation induces considerably less cell death as determined by trypan blue exclusion (approximately 20 - 25 % at 6 - 72 hours post-radiation). However, significant amounts of apoptosis were detected as early as 6 hours after radiation. Apoptosis determination was by annexin V (marker of early apoptosis) and propidium iodide (marker of membrane stability) staining followed by flow cytometry detection. When caspase 3 and caspase 8 enzymatic activities (mediators of apoptosis) were measured from freshly explanted tumor cells, peak activity was found 6 hours after 1 Gy radiation (p < 0.01). Taken together, these data indicate the presence of apoptosis early after radiation therapy (1 Gy) which progressed to necrosis in a unique in vivo model of gliosarcoma that may prove useful in determining new therapeutic approaches to radiation therapy and tumor cell biology.

References

  • 1 Verheij M, Bartelink H. Radiation-induced apoptosis.  Cell Tissue Res. 2000;  301 133-142
  • 2 Bristow R G, Benchimol S, Hill R P. The p53 gene as a modifier of intrinsic radiosensitivity: implications for radiotherapy.  Radiother Oncol. 1996;  40 197-223
  • 3 Kastan M B, Onyekwere O, Sidransky D. et al . Participation of p53 protein in the cellular response to DNA damage.  Cancer Res. 1991;  51 6304-6311
  • 4 Barker M, Hoshino T, Gurcay O. et al . Development of an animal brain tumor model and its response to therapy with 1,3-bis(2-chloroethyl)-1-nitrosourea.  Cancer Res. 1973;  33 976-986
  • 5 Adler jr J R, Chang S D, Murphy M J. et al . The Cyberknife: a frameless robotic system for radiosurgery.  Stereotact Funct Neurosurg. 1997;  69 124-128
  • 6 Chang S D, Adler J R. Robotics and radiosurgery - the cyberknife.  Stereotact Funct Neurosurg. 2001;  76 204-208
  • 7 Koopman G, Reutelingsperger C P, Kuijten G A. et al . Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis.  Blood. 1994;  84 1415-1420
  • 8 Martin S J, Reutelingsperger C P, McGahon A J. et al . Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl.  J Exp Med. 1995;  182 1545-1556
  • 9 Schwartz P S, Waxman D J. Cyclophosphamide induces caspase 9-dependent apoptosis in 9L tumor cells.  Mol Pharmacol. 2001;  60 1268-1279
  • 10 Stapper N J, Stuschke M, Sak A. et al . Radiation-induced apoptosis in human sarcoma and glioma cell lines.  Int J Cancer. 1995;  62 58-62
  • 11 Ciapetti G, Granchi D, Cenni E. et al . Cytotoxic effect of bone cements in HL-60 cells: distinction between apoptosis and necrosis.  J Biomed Mater Res. 2000;  52 338-345
  • 12 Hamatake M, Iguchi K, Hirano K. et al . Zinc induces mixed types of cell death, necrosis, and apoptosis, in molt-4 cells.  J Biochem (Tokyo). 2000;  128 933-939
  • 13 Mazur L, Bochenek M, Augustynek A. Phosphatidylserine externalization during bone marrow cell death after treatment of mice with WR-2721 and gamma-rays.  Folia Biol (Krakow). 2002;  50 95-100
  • 14 Willis M S, Klassen L W, Tuma D J. et al . Malondialdehyde-acetaldehyde-haptenated protein induces cell death by induction of necrosis and apoptosis in immune cells.  Int Immunopharmacol. 2002;  2 519-535
  • 15 Graham R M, Frazier D P, Thompson J W. et al . A unique pathway of cardiac myocyte death caused by hypoxia-acidosis.  J Exp Biol. 2004;  207 3189-3200
  • 16 Kurita H, Ostertag C B, Baumer B. et al . Early effects of PRS-irradiation for 9L gliosarcoma: characterization of interphase cell death.  Minim Invas Neurosurg. 2000;  43 197-200
  • 17 Konemann S, Bolling T, Schuck A. et al . Effect of radiation on Ewing tumour subpopulations characterized on a single-cell level: intracellular cytokine, immunophenotypic, DNA and apoptotic profile.  Int J Radiat Biol. 2003;  79 181-192
  • 18 Glucksmann A. Cell death in normal vertebrate ontogeny.  Biol Rev. 1951;  26 59-86
  • 19 Miller E. Apoptosis measurement by annexin v staining.  Methods Mol Med. 2004;  88 191-202
  • 20 Darzynkiewicz Z, Bruno S, Del Bino G. et al . Features of apoptotic cells measured by flow cytometry.  Cytometry. 1992;  13 795-808
  • 21 Gorczyca W, Gong J, Ardelt B. et al . The cell cycle related differences in susceptibility of HL-60 cells to apoptosis induced by various anti-tumor agents.  Cancer Res. 1993;  53 3186-3192
  • 22 Schmid I, Uittenbogaart C H, Giorgi J V. Sensitive method for measuring apoptosis and cell surface phenotype in human thymocytes by flow cytometry.  Cytometry. 1994;  15 12-20
  • 23 Stuart M C, Damoiseaux J G, Frederik P M. et al . Surface exposure of phosphatidylserine during apoptosis of rat thymocytes precedes nuclear changes.  Eur J Cell Biol. 1998;  76 77-83
  • 24 Engeland M van, Nieland L J, Ramaekers F C. et al . Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure.  Cytometry. 1998;  31 1-9
  • 25 Engeland M van, Ramaekers F C, Schutte B. et al . A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture.  Cytometry. 1996;  24 131-139
  • 26 Zhang G, Gurtu V, Kain S R. et al . Early detection of apoptosis using a fluorescent conjugate of annexin V.  Biotechniques. 1997;  23 525-531
  • 27 Kern J C, Kehrer J P. Acrolein-induced cell death: a caspase-influenced decision between apoptosis and oncosis/necrosis.  Chem Biol Interact. 2002;  139 79-95
  • 28 Zeiss C J. The apoptosis-necrosis continuum: insights from genetically altered mice.  Vet Pathol. 2003;  40 481-495
  • 29 Alderson L M, Castleberg R L, Harsh G RT. et al . Human gliomas with wildtype p53 express bcl-2.  Cancer Res. 1995;  55 999-1001
  • 30 Lang F F, Yung W K, Sawaya R. et al . Adenovirus-mediated p53 gene therapy for human gliomas.  Neurosurgery. 1999;  45 1093-1104
  • 31 Vogelbaum M A, Tong J X, Perugu R. et al . Overexpression of bax in human glioma cell lines.  J Neurosurg. 1999;  91 483-489
  • 32 Hao C, Beguinot F, Condorelli G. et al . Induction and intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apotosis in human malignant glioma cells.  Cancer Res. 2001;  61 1162-1170
  • 33 Knight M J, Riftkin C D, Muscat A M. et al . Analysis of FasL and TRAIL induced apoptosis pathways in glioma cells.  Oncogene. 2001;  20 5789-5798
  • 34 Seol D W, Li J, Seol M H. et al . Signaling events triggered by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL): caspase-8 is required for TRAIL-induced apoptosis.  Cancer Res. 2001;  61 1138-1143
  • 35 Song J H, Song D K, Pyrzynska B. et al . TRAIL triggers apoptosis in human malignant glioma cells through extrinsic and intrinsic pathways.  Brain Pathol. 2003;  13 539-553
  • 36 Xiao C, Yang B F, Asadi N. et al . Tumor necrosis factor-related apoptosis-inducing ligand-induced death-inducing signaling complex and its modulation by c-FLIP and PED/PEA-15 in glioma cells.  J Bioi Chem. 2002;  277 25 020-25 025
  • 37 Chambers W H, Bozik M E, Brissette-Storkus S C. et al . NKR-P1+ cells localize selectively in rat 9L gliosarcomas but have reduced cytolytic function.  Cancer Res. 1996;  56 3516-3525
  • 38 Lichtor T, Glick R P. Cytokine immuno-gene therapy for treatment of brain tumors.  J Neurooncol. 2003;  65 247-259
  • 39 Shah M R, Ramsey W J. CD8+ T-cell mediated anti-tumor responses cross-reacting against 9L and RT2 rat glioma cell lines.  Cell Immunol. 2003;  225 113-121
  • 40 Held K D. Radiation-induced apoptosis and its relationship to loss of clonogenic survival.  Apoptosis. 1997;  2 265-282
  • 41 Rodriguez A, Alpen E L, Mendonca M. et al . Recovery from potentially lethal damage and recruitment time of noncycling clonogenic cells in 9L confluent monolayers and spheroids.  Radiat Res. 1988;  114 515-527
  • 42 Pawlik T M, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy.  Int J Radiat Oncol Bioi Phys. 2004;  59 928-942
  • 43 Skog S, Tribukait B. Cell size following irradiation in relation to cell cycle.  Acta Radiol Oncol. 1986;  25 269-273
  • 44 Andersen A P. Postoperative irradiation of glioblastomas. Results in a randomized series.  Acta Radiol Oncol Radiat Phys Biol. 1978;  17 475-484
  • 45 Sheline G E. Radiation therapy of brain tumors.  Cancer. 1977;  39 873-881

Tom G. Psarros,M. D. 

Department of Neurosurgery · University of Texas Southwestern

5323 Harry Hines Blvd.

Dallas, TX 75390-885

USA

Email: tompsarros@aol.com

    >