Minim Invasive Neurosurg 2005; 48(2): 108-112
DOI: 10.1055/s-2004-830228
Original Article
© Georg Thieme Verlag Stuttgart · New York

Non-Traumatic Elevation Techniques of the Hypoglossal Nerve during Carotid Endarterectomy: A Cadaveric Study

G.  Bademci1 , F.  Batay2 , A.  O.  Tascioglu3
  • 1Department of Neurosurgery, Faculty of Medicine, University of Kirikkale, Kirikkale, Turkey
  • 2Division of Neurosurgery, Neurological Sciences Center, Bayindir Hospital, Ankara, Turkey
  • 3Department of Neurosurgery, Faculty of Medicine, University of Ankara, Ankara, Turkey
Further Information

Publication History

Publication Date:
24 May 2005 (online)

Abstract

Objective: Ligation and dissection techniques of sternocleidomastoid artery, vein, ansa cervicalis and posterior belly of digastric muscle were developed in a cadaveric study for achieving minimally invasive elevation of the hypoglossal nerve during carotid endarterectomy and were subsequently used in patient treatment. Methods: Carotid bifurcations, the extracranial part of the hypoglossal nerve, the sternocleidomastoid artery and vein and neighboring neurovascular structures were studied on 10 formalin-fixed adult cadaver heads (20 sides) under the surgical microscope. Landmarks and measurements for identification of the sternocleidomastoid artery and vein are described. Results: The distance between the hypoglossal loop and the carotid bifurcation was measured as 14.5 - 25.2 mm (mean: 19.24 mm). 30 % of 20 sides were determined to have a Zone II-type carotid bifurcation. In 33 % of the Zone-II-type bifurcations, a low-lying hypoglossal loop was demonstrated. The sternocleidomastoid artery begins 2.2 - 3.5 mm (mean: 2.94 mm) supero-posterior from the occipital artery after the crossing point between the occipital artery and the hypoglossal nerve. The sternocleidomastoid artery and vein complex was 17.1 - 21.5 mm (mean 18.47 mm) away from the carotid bifurcation and forms a right angle with the descending hypoglossal nerve. The contribution of the sternocleidomastoid branch of the occipital artery always reaches the middle parts of the sternocleidomastoid muscle. Conclusion: Carotid endarterectomy through having knowledge of the normal and variable trajectories of the structures can almost always be accomplished as a safe procedure when appropriate maneuvers are applied. Dissection and ligation of the sternocleidomastoid artery, vein, ansa cervicalis and posterior belly of digastric muscle are very simple but effective techniques to obtain adequate exposure either for safe arterial reconstruction or to diminish the necessity for more complicated technical procedures.

References

  • 1 Ballotta E, Da Giau G, Renon L, Narne S, Saladini M, Abbruzzese E, Meneghetti G. Cranial and cervical nerve injuries after carotid endarterectomy: A prospective study.  Surgery. 1999;  125 85-91
  • 2 Fernando D A, Lord R S, Ozmen J. The blood supply of the hypoglossal nerve and its relevance to carotid endarterectomy.  Cardiovasc Surg. 1999;  7 287-291
  • 3 Hans S S, Shah S, Hans B. Carotid endarterectomy for high plaques.  Am J Surg. 1989;  157 431-435
  • 4 Imparato A, Bracco A, Kim G E, Bergmann L. The hypoglossal nerve in carotid arterial reconstructions.  Stroke. 1972;  3 576-578
  • 5 Aldoori M, Baird N R. Local neurological complication during carotid endarterectomy.  J Cardiovasc Surg. 1988;  29 432-436
  • 6 De Palma R. Optimal exposure of the internal carotid artery for endarterectomy.  Surg Gynecol Obstet. 1977;  144 249-251
  • 7 Theodore N, Baskin J, Spetzler R F, Vishteh G, Apostolides P J, Holland M C. Microsurgical carotid endarterectomy.  Operative Techniques in Neurosurgery. 1998;  1 178-184
  • 8 Froes L B, Tolosa E M, Camargo R D, Pompeu E, Liberti E A. Blood supply to the human sternocleidomastoid muscle by the sternocleidomastoid branch of the occipital artery.  Clin Anat. 1999;  12 412-416
  • 9 Sundt T M, Sandok B A, Whisant J P. Carotid endarterectomy. Complications and perioperative assessment of risk.  Mayo Clin Proc. 1975;  50 301-306
  • 10 Maniglia A, Han P. Cranial nerve injuries following carotid endarterectomy: An analysis of 336 procedures.  Head & Neck. 1991;  13 121-124
  • 11 Matsumoto G H, Cossman D, Callow A D. Hazards and safeguards during carotid endarterectomy.  Am J Surg. 1977;  133 458-462
  • 12 Ranson J H, Imparato A M, Clauss R H. Factors in the mortality and morbidity associated with surgical treatment of cerebrovascular insufficiency.  Circulation. 1969;  39 269-274
  • 13 Fisch U P, Oldring D J, Senning A. Surgical therapy of internal carotid artery lesions at the skull base and temporal bone.  Otolaryngol Head Neck Surg. 1980;  88 548-554
  • 14 Sandmann W, Hennerici M, Aulich A, Horst K, Kremer K W. Carotid artery surgery at the base of skull.  J Vasc Surg. 1984;  1 734-743
  • 15 Scotti G, Melancon D, Olivier A. Hypoglossal paralysis due to compression by a tortuous internal carotid artery in the neck.  Neuroradiology. 1978;  17 263-265
  • 16 Froes L B, Tolosa E M, Camargo R D, Pompeu E, Liberti E A. Radiographic aspects and angioarchitectural arrangements in corrosion casts of the blood supply to the human sternocleidomastoid muscle by the sternocleidomastoid branch of the occipital artery.  Rev Hosp Clin Fac Med Sao Paulo. 1999;  54 127-130
  • 17 Grant J CB. An atlas of anatomy. 6th edn. Baltimore: Williams & Wilkins 1972: pp 542-543
  • 18 Gray S W. Gray's Textbook of Anatomy. 28th edn,. 1967: pp 960-962

Gulsah Bademci, M. D. 

Buketkent Mah

Iller Sitesi 9

Blok No. 9

06530 Cayyolu

Ankara

Turkey ·

Phone: +903-12-241-5820

Fax: +903-18-225-2819

Email: bademci70@yahoo.com

    >