Minim Invasive Neurosurg 2005; 48(1): 1-6
DOI: 10.1055/s-2004-830169
Original Article
© Georg Thieme Verlag Stuttgart · New York

Deep Brain Stimulation in Intraoperative MRI Environment - Comparison of Imaging Techniques and Electrode Fixation Methods

M.  W. Y.  Lee1 , A.  A. F.  De Salles1 , L.  Frighetto1 , R.  Torres1 , E.  Behnke1 , J.  M.  Bronstein2
  • 1Division of Neurosurgery, University of California Los Angeles School of Medicine, Los Angeles, USA
  • 2Department of Neurology, University of California Los Angeles School of Medicine, Los Angeles, USA
Further Information

Publication History

Publication Date:
04 March 2005 (online)

Abstract

We performed 118 consecutive DBS cases from November 1999 to June 2002. Intraoperatively there were 10 cases studied with fluoroscopy, 73 with 0.2 Tesla (T) MRI and 35 with 1.5 T MRI. Ten electrodes were secured by Medtronic caps, 25 by methyl methacrylate with titanium miniplates, and 82 by Navigus caps. The 3-dimensional displacement between the planned target and actual electrode position (3DD) was determined by fusing the postoperative MRI with the preoperative imaging. The 3DD for using Medtronic caps, methyl methacrylate with miniplates, and Navigus caps were 4.80 ± 3.16, 2.64 ± 1.26 and 2.23 ± 1.15 mm (mean ± SD), respectively. Navigus caps had statistically significant accuracy (P = 0.03) in holding the electrode when compared with Medtronic caps, and it facilitated electrode revision. The fixation devices significantly affect the final vertical position of the electrode. The 3DD for fluoroscopy, 0.2 T and 1.5 T MRI cases were 4.80 ± 3.16, 2.31 ± 1.21 and 2.34 ± 1.14 mm (mean ± SD), respectively. No statistically significant difference (P = 0.91) in 3DD was demonstrated between 0.2 T and 1.5 T MRI cases. The presence of intraoperative 1.5 T MRI allowed near real-time electrode position confirmation and early detection of hemorrhagic complications. Satisfactory microelectrode recording was feasible in low-field 0.2 T and high-field 1.5 T MRI environments. Further studies on performing DBS in real-time intraoperative MRI are warranted.

References

  • 1 Alterman R L, Shils J, Rogers J. Methyl methacrylate insufficiently fixes deep brain stimulator lead position.  Neurosurgery. 2001;  48 458 (Letter)
  • 2 Ashby P, Kim Y J, Kumar R. et al . Neurophysiological effects of stimulation through electrodes in the human subthalamic nucleus.  Brain. 1999;  122 1919-1931
  • 3 Benabid A L, Benazzouz A, Gao D. et al . Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus and of other nuclei as a treatment for Parkinson's disease.  Tech Neurosurg. 1999;  5 5-30
  • 4 De Salles A A. Role of stereotaxis in the treatment of cerebral palsy.  J Child Neurol. 1996;  11 (Suppl 1) S43-50
  • 5 De Salles A A, Frighetto L, Behnke E. et al . Functional neurosurgery in the MRI environment.  Minim Invas Neurosurg. 2004;  47 284-289
  • 6 Duffner F, Schiffbauer H, Breit S. et al . Relevance of image fusion for target point determination in functional neurosurgery.  Acta Neurochir (Wien). 2002;  144 445-451
  • 7 Eskandar E, Shinobu L A, Penney Jr J B. et al . Non-microelectrode guided stereotactic pallidotomy for Parkinson's disease: surgical technique and results.  Stereotact Funct Neurosurg. 1999;  72 245
  • 8 Slavin K V, Burchiel K J. MicroGuide microelectrode recording system.  Neurosurgery. 2002;  51 275-278
  • 9 Sumanaweera T S, Adler Jr J R, Napel S. et al . Characterization of spatial distortion in magnetic resonance imaging and its implications for stereotactic surgery.  Neurosurgery. 1994;  35 696-704
  • 10 Kondziolka D, Dempsey P K, Lunsford L D. et al . A comparison between magnetic resonance imaging and computed tomography for stereotactic coordinate determination.  Neurosurgery. 1992;  30 402-407
  • 11 Schuurman P R, de Bie R M, Majoie C B. et al . A prospective comparison between three-dimensional magnetic resonance imaging and ventriculography for target-coordinate determination in frame-based functional stereotactic neurosurgery.  J Neurosurg. 1999;  91 911-914
  • 12 Schuurman P R, Bosch D A, Bossuyt P M. et al . A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor.  N Engl J Med. 2000;  342 461-468
  • 13 Starr P A, Vitek J L, DeLong M. et al . Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus.  Neurosurgery. 1999;  44 303-313; discussion: 313 - 314
  • 14 Vayssiere N, Hemm S, Zanca M. et al . Magnetic resonance imaging stereotactic target localization for deep brain stimulation in dystonic children.  J Neurosurg. 2000;  93 784-790
  • 15 Yelnik J, Damier P, Demeret S, Gervais D, Bardinet E, Bejjani B P, Francois C, Houeto J L, Arnule I, Dormont D, Galanaud D, Pidoux B, Cornu P, Agid Y. Localization of stimulating electrodes in patients with Parkinson disease by using a three-dimensional atlas - magnetic resonance imaging coregistration method.  J Neurosurg. 2003;  99 89-99
  • 16 Oh M Y, Abosch A, Kim S H. et al . Long-term hardware-related complications of deep brain stimulation.  Neurosurgery. 2002;  50 1268-1274; discussion: 1274 - 1276
  • 17 Mobin F, De Salles A A, Behnke E J. et al . Correlation between MRI-based stereotactic thalamic deep brain stimulation electrode placement, macroelectrode stimulation and clinical response to tremor control.  Stereotact Funct Neurosurg. 1999;  72 225-232
  • 18 Favre J, Taha I M, Steel T. et al . Anchoring of deep brain stimulation electrodes using a microplate. Technical note.  J Neurosurg. 1996;  85 1181-1183
  • 19 Guridi J, Rodriguez-Oroz M C, Lozano A M. et al . Targeting the basal ganglia for deep brain stimulation in Parkinson's disease.  Neurology. 2000;  55 (12 Suppl 6) S21-28
  • 20 Hariz M I, De Salles A A. The side-effects and complications of posteroventral pallidotomy.  Acta Neurochir Suppl (Wien). 1997;  68 42-48
  • 21 Ray C D. Burr-hole ring-cap and electrode anchoring device. Technical note.  J Neurosurg. 1981;  55 1004-1006
  • 22 Starr P A, Christine C W, Theodosopoulos P V. et al . Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations.  J Neurosurg. 2002;  97 370-387
  • 23 Vayssiere N, Hemm S, Cif L. et al . Comparison of atlas- and magnetic resonance imaging-based stereotactic targeting of the globus pallidus internus in the performance of deep brain stimulation for treatment of dystonia.  J Neurosurg. 2002;  96 673-679
  • 24 Voges J, Volkmann J, Allert N. et al . Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anatomical electrode position.  J Neurosurg. 2002;  96 269-279
  • 25 Zonenshayn M, Rezai A R, Mogilner A Y. et al . Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting.  Neurosurgery. 2000;  47 282-292; discussion: 292 - 294

Antonio A. F. De Salles, M.D., Ph. D. 

200 UCLA Medical Plaza

Suite 504, 718424

Los Angeles, CA 90095-7184

USA

Phone: +1-310-794-1221

Fax: +1-310-794-1848

Email: adesalles@mednet.ucla.edu

    >