Int J Sports Med 2004; 25(5): 332-338
DOI: 10.1055/s-2004-815841
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

The Effect of Mechanical Loading on the MyHC Synthesis Rate and Composition in Rat Plantaris Muscle

A. Pehme1 , K. Alev1 , P. Kaasik1 , A. Julkunen2 , T. Seene1
  • 1Department of Functional Morphology, University of Tartu, Estonia
  • 2Department of Clinical Chemistry, University of Kuopio, Finland
Further Information

Publication History

Accepted after revision: August 8, 2003

Publication Date:
18 May 2004 (online)

Abstract

The aim of this study was to investigate the response of protein synthesis rate, particularly myosin heavy chain (MyHC) isoforms synthesis and the magnitude of its isoform transformation in fast-twitch plantaris muscle, to different modes of prolonged mechanical loading. Different protocols of mechanical loading were used: resistance training (RT), compensatory hypertrophy (CH) of m. plantaris after tenotomy of m. gastrocnemius and a combination of the two previous loadings (RT + CH). During the different modes of loading, plantaris muscle hypertrophy in RT group was ∼ 10 %, CH ∼ 40 % and CH + RT ∼ 44 %. MyHC I and IID isoform synthesis rate increased in all experimental groups, as well as their relative content. MyHC IIA relative content decreased during RT and RT + CH and increased during CH. MHC IIB isoform relative content decreased in all experimental groups, but compared with CH in CH + RT MyHC IIB isoform content increased in plantaris muscle. These results demonstrate that different modes of mechanical loading resulted in the selective up- and down-regulation of MyHC isoforms in fast-twitch skeletal muscle. The synthesis rate and relative content of the two fastest isoforms of MyHC IIB and IID are regulated to different directions during mechanical loading.

References

  • 1 Andersen J, Aagaard P. Myosin heavy chain IIx overshoot in human skeletal muscle.  Muscle & Nerve. 2000;  23 1095-1104
  • 2 Balagopal P, Ljungvist O, Nair K. Skeletal muscle myosin heavy-chain synthesis rate in healthy humans.  Am J Physiol. 1997;  272 45-50
  • 3 Balagopal P, Schimke J C, Ades P, Adey D, Nair K S. Age effect on transcript levels and synthesis rate of muscle MHC and response to resistance exercise.  Am J Physiol Endocrinol Metab. 2001;  280 203-208
  • 4 Baldwin K M, Herrick R E, Ilyina-Kakueva E, Oganov V S. Effects of zero gravity on myofibril content and isomyosin distribution in rodent skeletal muscle.  FASEB J. 1990;  4 269-312
  • 5 Bottinelli R. Functional heterogenity of mammalian single muscle fibres: do myosin isoforms tell the whole story.  Eur J Physiol. 2001;  443 6-17
  • 6 Bradford M M. A rapid sensitive method for quantification of microgram quantities of protein utilizing the principles of protein dye binding.  Ann Biochem. 1976;  72 248-254
  • 7 Bär A, Pette D. Three fast myosin heavy chains in adult fast skeletal muscle.  FEBS Lett. 1988;  235 153-155
  • 8 Böhlen P, Stein S, Dairman W, Udenfriend S. Fluorometric assay of proteins in the nanogram range.  Arch Biochem Biophys. 1973;  155 213-220
  • 9 Caiozzo V J, Baker M J, Baldwin K M. Modulation of myosin isoform expression by mechanical loading: role of stimulation frequency.  J Appl Physiol. 1997;  82 211-218
  • 10 Caiozzo V J, Haddad F, Baker M J, Baldwin K M. Influence of mechanical loading on myosin heavy-chain protein and mRNA isoform expression.  J Appl Physiol. 1996;  80 1503-1512
  • 11 Campos G, Luecke T, Wendeln H, Toma K, Hagerman F, Murray T, Ragg K, Ratamess N, Kraemer W, Staron R. Muscular adaptions in response to three different resistance-training regimens: specificity of repetition maximum training zones.  Eur J Appl Physiol. 2002;  88 50-60
  • 12 Carson I, Nettleton D, Reecy J. Differential gene expression in the rat soleus muscle during early work overload-induced hypertrophy.  FASEB J. 2002;  16 207-209
  • 13 Demirel H, Powers S, Naito H, Huges M, Coombes J. Exercise-induced alterations in skeletal muscle myosin heavy chain phenotype: dose-response relationship.  J Appl Physiol. 1999;  86 1002-1008
  • 14 Diffee G M, Caiozzo V J, McCue S A, Herrick R E, Baldwin K M. Activity-induced regulation of myosin isoform distribution: comparison of two contractile activity programs.  J Appl Physiol. 1993;  74 2509-2516
  • 15 Fauteck S P, Kandarian S C. Sensitive detection of myosin heavy chain composition in skeletal muscle under different loading conditions.  Am J Physiol. 1995;  268 419-424
  • 16 Flück M, Hoppeler H. Molecular basis of skeletal muscle plasticity-from gene to form and function.  Rev Physiol Biochem Pharmacol. 2003;  146 159-216
  • 17 Frederiksen H, Christensen K. The influence of genetic factors on physical functioning and exercise in second half of life.  Scand J Med Sci Sports. 2003;  13 9-18
  • 18 Gollnick P D, Timson B F, Moore R L, Riedy M. Muscular enlargement and number of fibers in skeletal muscles of rats.  J Appl Physiol. 1981;  50 936-943
  • 19 Graser T A, Godel H G, Albers S, Földi P, Fürst P. An ultra rapid and sensitive high-performance liquid chromatographic method for determination of tissue and plasma free amino acids.  Anal Biochem. 1985;  151 142-152
  • 20 Gür H, Gransberg L, vanDyke D, Knutsson E, Larsson L. Relationship between in vivo muscle force at different speeds of isokinetic movements and myosin isoform expression in men and women.  Eur J Appl Physiol. 2003;  88 487-496
  • 21 Hanzlikova V, Mackova E V, Hnik P. Satellite cells of the rat soleus muscle in the process of compensatory hypertrophy combined with denervation.  Cell Tiss Res. 1975;  160 411-421
  • 22 Harridge S DR. Ageing and local growth factors in muscle.  Scand J Med Sci Sports. 2003;  13 34-39
  • 23 Hasten D L, Pak-Loduca J, Obert K A, Yarasheski K E. Resistance exercise acutely increases MHC and mixed muscle protein synthesis rates in 78 - 84 and 23 - 32 yr olds.  Am J Physiol Endocrinol Metab. 2000;  278 620-626
  • 24 Hernandez I, Fedele M, Farrell P. Time course evaluation of protein synthesis and glucose uptake after acute resistance exercise in rats.  J Appl Physiol. 2000;  88 1142-1149
  • 25 Hunkapiller M W, Lujan E, Ostrander F, Hood L E. Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis.  Meth in Enzymol. 1983;  91 227-236
  • 26 Lowry O H, Rosenbrough N J, Farr A L, Randall R J. Protein measurement with the Folin phenol reagent.  J Biol Chem. 1951;  193 265-275
  • 27 Noirez P, Agbulut O, Ferry A. Differential modification of myosin heavy chain expression by tenotomy in regenerating fast and slow muscles of the rat.  Exp Physiol. 2000;  85 187-191
  • 28 Oakley B R, Kirsch D R, Morris N R. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels.  Anal Biochem. 1980;  105 361-363
  • 29 Pehme A, Seene T. A model for strength exercise of skeletal muscles in rat.  Scand J Lab Animal Sci. 1996;  23 419-424
  • 30 Pette D. Plasticity in skeletal, cardiac, and smooth muscle. Historical perspectives: plasticity of mammalian skeletal muscle.  J Appl Physiol. 2001;  90 1119-1124
  • 31 Porzio M, Pearson A. Improved resolution of myofibrillar proteins with sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  Biochim Biophys Acta. 1997;  490 27-34
  • 32 Schreurs V, Boekholt H, Koopmanschap R. Gel filtration in sodium dodecyl sulphate of hydrophobic muscle proteins on Sephacryl S-400 superfine.  J Cromatography. 1983;  254 203-210
  • 33 Seene T, Alev K. Effect of glucocorticoids on the turnover rate of actin and myosin heavy and light chains on different types of skeletal muscle fibres.  J Steroid Biochem. 1985;  22 767-771
  • 34 Seene T, Alev K, Pehme A. Effect of muscular activity on the turnover rate of actin and myosin heavy and light chains in different types of skeletal muscle.  Int J Sports Med. 1991;  12 204-207
  • 35 Seene T, Umnova M. Relations between the changes in the turnover rate of contractile proteins, activation of satellite cells and ultra-structural response of neuromuscular junctions in the fast-oxidative-glycolytic muscle fibres in endurance trained rats.  Basic Appl Myol. 1992;  2 39-46
  • 36 Sugden P H, Fuller S J. Regulation of protein turnover in skeletal and cardiac muscle.  Biochem J. 1991;  273 21-37
  • 37 Sugiura T, Murakami N. Separation of myosin heavy chain isoforms in rat skeletal muscles by gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  Biomedical Res. 1990;  11 87-91
  • 38 Sullivan V K, Powers S K, Griswell D S, Tumer N, Larochelle J S, Lowenthal D. Myosin heavy chain composition in young and old rat skeletal muscle: effects of endurance training.  J Appl Physiol. 1995;  78 2115-2120
  • 39 Tikunov B, Sweeney H, Rone L. Quantitative electrophoretic analyses of myosin heavy chain in single muscle fibers.  J Appl Physiol. 2000;  90 1927-1935
  • 40 Timson B. Evaluation of animal models for the study of exercise-induced muscle enlargement.  J Appl Physiol. 1990;  69 1935-1945

Ando Pehme

Department of Functional Morphology, University of Tartu

Jakobi Str 5

51014 Tartu

Estonia

Phone: + 3727375364

Fax: + 37 27 37 53 62

Email: andop@ut.ee

    >