Synlett 2004(3): 453-456  
DOI: 10.1055/s-2004-815404
LETTER
© Georg Thieme Verlag Stuttgart · New York

Solid-Phase Assisted N-1 Functionalization of Azamacrocycles

Morag Olivera, Michael R. Jorgensen*b, Andrew D. Miller*a
a Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London, SW7 2AZ, UK
e-Mail: a.miller@imperial.ac.uk;
b IC-Vec Ltd., Flowers Building, Armstrong Road, London, SW7 2AZ, UK
Fax: +44(20)75945803; e-Mail: m.jorgensen@icvec.com;
Further Information

Publication History

Received 20 November 2003
Publication Date:
12 January 2004 (online)

Abstract

A simple solid-phase assisted strategy for the N-1 functionalization of azamacrocycles is described. Compounds such as cyclen, cyclam and piperazine can be selectively modified by ­temporary attachment to solid-phase resins providing an efficient and clean method to prepare biomedically interesting moieteies.

    References

  • 1a Caravan P. Ellison JJ. McMurry TJ. Lauffer RB. Chem. Rev.  1999,  99:  2293 
  • 1b Bianchi A. Calabi L. Corana F. Losi P. Maiocchi A. Paleari L. Valtancoli B. Coord. Chem. Rev.  2000,  204:  309 
  • 2a Aoki S. Kawatani H. Goto T. Kimura E. Shiro M. J. Am. Chem. Soc.  2001,  123:  1123 
  • 2b Reany O. Gunnlaugsson T. Parker D. Chem. Commun.  2000,  473 
  • 3a Epstein DM. Chappell LL. Khalili H. Supkowski RM. Horrocks WDW. Morrow JR. Inorg. Chem.  2000,  39:  2130 
  • 3b McCue KP. Morrow JR. Inorg. Chem.  1999,  38:  6136 
  • 3c Morrow JR. Amin S. Lake CH. Churchill MR. Inorg. Chem.  1993,  32:  4566 
  • 4a Anderson CJ. Welch MJ. Chem. Rev.  1999,  99:  2219 
  • 4b Volkert WA. Hoffman TJ. Chem. Rev.  1999,  99:  2269 
  • 5a Bridger GJ. Skerlj RT. Thornton D. Padmanabhan S. Martellucci SA. Henson GW. Abrams MJ. Yamamoto N. Vreese KD. Pauwels R. Clercq ED. J. Med. Chem.  1995,  38:  366 
  • 5b Clercq ED. Yamamoto N. Pauwels R. Baba M. Schols D. Nakashima H. Balzarini J. Debyser Z. Murrer BA. Schwartz D. Thornton D. Bridger G. Fricker S. Henson G. Abrams M. Picker D. Proc. Natl. Acad. Sci. U.S.A.  1992,  89:  5286 
  • 6 Bridger GJ, Abrams MJ, Henson GW, MacFarland RT, and Calandra GB. inventors; PCT Int. Appl. CAN  138:147724. 
  • 7 Alcock NW. Kingston RG. Moore P. Peirpoint C. J. Chem. Soc., Dalton Trans.  1984,  1937 
  • 8 Helps IM. Parker D. Morphy JR. Chapman J. Tetrahedron  1989,  45:  219 
  • 9a Patinec V. Yaouvanc JJ. Clement JC. Handel H. Tetrahedron Lett.  1995,  36:  79 
  • 9b Patinec V. Yaouanc JJ. Handel H. Clement JC. Abbayes HD. Inorg. Chim. Acta  1994,  347 
  • 10 Chuburu F. Baccon ML. Handel H. Tetrahedron  2001,  2385 
  • 11a Guillaume D. Marshall GR. Synth. Commun.  1998,  28:  2903 
  • 11b Bender JA. Meanwell NA. Wang T. Tetrahedron  2002,  3111 
  • 13 Nash IA. Bycroft BW. Chan WC. Tetrahedron Lett.  1996,  37:  2625 
  • 14 Leclercq F. Cohen-Ohana M. Sbsrbati A. Herscovici J. Scherman D. Byk G. Bioconjugate Chem.  2003,  14:  112 
  • 15 Sabatino G. Chinol M. Paganelli G. Papi S. Chelli M. Leone G. Papini AM. Luca AD. Ginanneschi M. J. Med. Chem.  2003,  46:  3170 
  • 16a Eisenwiener K.-P. Powell P. Mäcke HR. Bioorg. Med. Chem. Lett.  2000,  10:  2133 
  • 16b Heppeler A. Froidevaux S. Mäcke HR. Jermann E. Behe M. Powell P. Hennig M. Chem.-Eur. J.  1999,  5:  1974 
12

Novabiochem catalogue 2002/3, Merck Biosciences.

17

Chloranil test: To 1-5 mg of resin add one drop of acetaldehyde in DMF followed by one drop of 2% p-chloranil in DMF. Allow to stand at r.t. for 5 min blue beads indicate the prescence of secondary amines.

18

Sample data for production of protected cyclic amines. Product: Tri-Boc cyclen (15). FT-IR (film): νmax = 3417 (amine), 2960 (alkyl), 1712 (carbonyl), 1681 (amide), 1470 (alkyl) cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.45 [C(CH3)3 × 2], 1.46 [C(CH3)3], 3.25-3.34 (4 H, m, CH2 × 2), 3.39-3.46 (8 H, m, CH2 × 4), 3.54-3.59 (4 H, m, CH2 × 2). 13C NMR (100 MHz, CDCl3): δ = 28.1 [C(CH3)3], 28.2 [C(CH3)3 × 2], 46.8 (CH2 × 2), 47.6 (CH2 × 2), 50.7 (CH2 × 2), 52.7 (CH2 × 2), 82.0 [C(CH3)3], 82.2 [C(CH3)3 × 2], 156.8 (COOt-Bu × 2), 157.8 (COOt-Bu). MS (ESI+ve): m/z = 473 (M + H). FAB-MS: m/e calcd for C23H45N4O6 (M + H): 473.3316; found: 473.3339. HPLC analysis: t R = 24.0 min, column Vydac C-4 peptide, mobile phases MeCN (0.1% TFA) and H2O (0.1% TFA), gradient H2O/MeCN, 0-20 min [100/0] to [0/100], 20-25 min [0/100], 25.1 min [100/0], 40.0 min [100/0], flow rate 1 mL/min.

19

Sample data for production of selectively protected polyacetic acid derivatives. Product: Tri-t-Bu-DOTA (21). FT-IR (film): νmax = 3540 (amine), 2957 (alkyl), 2933(alkyl), 2850 (alkyl), 1744(carbonyl), 1632 (amide), 1454(alkyl) cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.42 [27 H, s, C(CH3)3 × 3], 2.71-2.82 (4 H, m, CH2 × 2), 2.97-3.12 (8 H, m, CH2 × 4), 3.26-3.31 (4 H, m, CH2 × 2), 3.37 (2 H, s, CH2COOt-Bu), 3.36 (2 H, s, br, CH2COOH), 3.70 (4 H, s, CH2COOt-Bu × 2). 13C NMR (100 MHz, CDCl3): δ = 28.0 [C(CH3)3 × 3], 48.3 (CH2 × 2), 50.1 (CH2 × 2), 53.2 (CH2 × 2), 53.3 (CH2), 53.4 (CH2), 55.6 (CH2COOt-Bu), 55.9 (CH2COOt-Bu × 2), 56.7 (CH2COOH), 81.6 [C(CH3)3], 81.7 [C(CH3)3 × 2], 167.4 (COOt-Bu), 169.8 (COOt-Bu × 2), 170.5 (COOH). MS (FAB+ve): m/z = 573 (M + H). FAB-MS: m/e calcd for C28H53N4O8 (M + H): 573.3863; found: 573.3885. HPLC analysis t R = 22.0 min, column Vydac C-4 peptide, mobile phases MeCN (0.1% TFA) and H2O (0.1% TFA), gradient H2O/MeCN, 0-20 min [100/0] to [0/100], 20-25 min [0/100], 25.1 min [100/0], 40.0 min [100/0], flow rate 1 mL/min.