Am J Perinatol 2003; 20(8): 465-476
DOI: 10.1055/s-2003-45387
ORIGINAL ARTICLE

Copyright © 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Lymphocyte Subpopulations in Bronchopulmonary Dysplasia

Praveen Ballabh1 , Maciej Simm2 , Jaishree Kumari2 , Alfred N. Krauss3 , Ajey Jain3 , Peter A.M. Auld3 , Susanna Cunningham-Rundles4
  • 1Division of Newborn Unit, Westchester Medical Center, Valhalla, New York
  • 2The New York Presbyterian Cornell Medical Center
  • 3Department of Pediatrics, Weill Medical College of Cornell University, New York, New York
  • 4Cellular Immunology Laboratory, Weill Medical College of Cornell University, New York, New York
Further Information

Publication History

Publication Date:
02 January 2004 (online)

ABSTRACT

A key role for inflammation in the etiology of bronchopulmonary dysplasia (BPD) has been proposed. In the present study we have evaluated lymphocyte subpopulations in 39 premature infants with respiratory distress syndrome (RDS) who did or did not develop BPD. The absolute number of lymphocytes was lower among infants with RDS who developed BPD compared with those who did not over the first two weeks of life (p < 0.020) as were percentage and absolute number of CD4+ T cells. By contrast, the proportions of CD3+CD8+ lymphocyte cells were not statistically different between non-BPD and BPD infants. B cell percentage was significantly decreased in BPD infants only on day 7. NK “bright” cells (CD56+) were highly enriched in all RDS groups. Interestingly, the percentage of CD4+ T cells expressing CD62L was selectively reduced in BPD infants. As a whole these data suggest that reduction of CD4+ T cells and especially those important in tissue migration and immune surveillance may be a factor in the pathogenesis of BPD.

REFERENCES

  • 1 Bancalari E. Changes in pathogenesis and prevention of chronic lung disease of prematurity.  Am J Perinatol . 2001;  18 1-9
  • 2 Speer C P. New insights into the pathogenesis of pulmonary inflammation in preterm infants.  Biol Neonate . 2001;  79 205-209
  • 3 Jobe A H, Akegami M. Prevention of bronchopulmonary dysplasia.  Curr Opin Pediatr . 2001;  13 124-129
  • 4 Yoon B H, Romero R, Kim K S. et al . A systemic fetal inflammatory response and the development of bronchopulmonary dysplasia.  Am J Obstet Gynecol . 1999;  181 773-779
  • 5 Ballabh P, Kumari J, Shin J. et al . Soluble E-selectin, soluble L-selectin and ICAM-1 in bronchopulmonary dysplasia and changes with dexamethasone.  Pediatrics . 2003;  111 461-468
  • 6 Ballabh P, Simm M, Kumari J. et al . Neutrophil and monocyte adhesion molecules including CD11b, CD18 and CD62L in bronchopulmonary dysplasia and changes with dexamethasone.  Arch Dis Child 2003. In press.
  • 7 Series I M, Pichette J, Carrier C. et al . Quantitative analysis of T and B cell subsets in healthy and sick premature infants.  Early Hum Dev . 1991;  26 143-154
  • 8 Ballow M, Cates K L, Rowe J C, Goetz C, Pantschenko A G. Peripheral blood T-cell subpopulations in the very low birth weight (less than 1,500-g) infant.  Am J Hematol . 1987;  24 85-92
  • 9 Juretic E, Uzarevic B, Petrovecki M, Juretic A. Two-color flow-cytometric analysis of preterm and term newborn lymphocytes.  Immunobiology . 2000;  202 421-428
  • 10 Kotiranta-Ainamo A, Apajasalo M, Pohjavuori M, Rautonen N, Rautonen J. Mononuclear cell subpopulations in preterm and full-term neonates: independent effects of gestational age, neonatal infection, maternal pre-eclampsia, maternal betamethasone therapy, and mode of delivery.  Clin Exp Immunol . 1999;  115 309-314
  • 11 Parimi P S, Birnkrant D J, Rao L V, Diaz G. Moore JJ.  Effect of dexamethasone on lymphocyte subpopulations in premature infants with bronchopulmonary dysplasia. J Perinatol . 1999;  19 347-351
  • 12 Northway W H, Rosan R C, Porter D Y. Pulmonary disease following respiratory therapy of hyaline membrane disease: bronchopulmonary dysplasia.  N Engl J Med . 1967;  276 357-368
  • 13 Bancalari E, Claure N, Sosenko I R. Bronchopulmonary dysplasia: changes in pathogenesis, epidemiology and definition.  Semin Neonatol . 2003;  8 63-71
  • 14 Martin R J, Walsh-Sukys M C. Bronchopulmonary dysplasia: no simple solution.  N Engl J Med . 1999;  340 1005-1010
  • 15 Ng D K, Lau W Y, Lee S L. Pulmonary sequelae in long-term survivors of bronchopulmonary dysplasia.  Pediatr Int . 2000;  42 603-607
  • 16 Huysman W A, de Ridder M, de Bruin C N. et al . Growth and body composition in preterm infants with bronchopulmonary dysplasia.  Arch Dis Child Fetal Neonatal Ed . 2003;  88 F46-F51
  • 17 Jobe A H, Bancalari E. Bronchopulmonary dysplasia.  Am J Respir Crit Care Med . 2001;  163 1723-1729
  • 18 Speer C P. Inflammation and bronchopulmonary dysplasia.  Semin Neonatol . 2003;  8 29-38
  • 19 Zanardo V, Savio V, Giacomin C, Rinaldi A, Marzari F, Chiarelli S. Relationship between neonatal leukemoid reaction and bronchopulmonary dysplasia in low-birth-weight infants: a cross-sectional study.  Am J Perinatol . 2002;  19 379-386
  • 20 Ramsay P L, O'Brian Smith E, Hegemier S, Welty S E. Early clinical markers for the development of bronchopulmonary dysplasia: soluble E-selectin and ICAM-1.  Pediatrics . 1998;  102 927-932
  • 21 Koenig J M, Simon J, Anderson D C, Smith E O, Smith C W. Diminished soluble and total cellular L-selectin in cord blood is associated with its impaired shedding from activated neutrophils.  Pediatr Res . 1996;  39 616-621
  • 22 Hafezi-Moghadam A, Thomas K L, Prorock A J, Huo Y, Ley K. L-selectin shedding regulates leukocyte recruitment.  J Exp Med . 2001;  193 863-872
  • 23 Malamitsi-Puchner A, Tziotis J, Mastorakos G, Protonotariou E, Creatsas G. Adhesion molecules in early neonatal life.  Biol Neonate . 2000;  78 65-67
  • 24 Cooper M A, Fehniger T A, Turner S C. et al . Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset.  Blood . 2001;  97 3146-3151
  • 25 Cooper M A, Fehniger T A, Caligiuri M A. The biology of human natural killer-cell subsets.  Trends Immunol . 2001;  22 633-640
  • 26 Voss S D, Daley J, Ritz J, Robertson M J. Participation of the CD94 receptor complex in costimulation of human natural killer cells.  J Immunol . 1998;  160 1618-1626
  • 27 Hengel R L, Thaker V, Pavlick M V. et al . Cutting edge: L-selectin (CD62L) expression distinguishes small resting memory CD4+ T cells that preferentially respond to recall antigen.  J Immunol . 2003;  170 28-32
  • 28 Savage N D, Harris S H, Rossi A G. et al . Inhibition of TCR-mediated shedding of L-selectin (CD62L) on human and mouse CD4+ T cells by metalloproteinase inhibition: analysis of the regulation of Th1/Th2 function.  Eur J Immunol . 2002;  32 2905-2914
  • 29 Pelkonen A S, Suomalainen H, Hallman M, Turpeinen M. Peripheral blood lymphocyte subpopulations in schoolchildren born very preterm.  Arch Dis Child Fetal Neonatal Ed . 1999;  81 F188-F193
    >