Titanium Tetraisopropoxide

Compiled by Óscar López

Óscar López was born in Seville (Spain) in 1976 and studied chemistry in the University of Seville, where he received his diploma in 1999. He is currently finishing his PhD studies at the same University, in the Department of Organic Chemistry, under the supervision of Professor José G. Fernández-Bolaños. His research field is new synthetic approaches to carbohydrate-derived thio-ureas, isoureas, ureas, and selenoureas.

Departamento Química Orgánica, Facultad Química, Universidad Sevilla, Apartado 553, 41071 Sevilla, Spain
E-mail: osc-lopez@mixmail.com

Abstracts

(A) Ti(i-PrO)₄ is a mild catalyst for transesterification reactions; it is used in macrolide synthesis to facilitate ring size equilibration. For instance, macrolide 1 was transformed into 2 by treatment with Ti(i-PrO)₄ and this macrolide was used in the synthesis of Scytophycin C.

(B) Ti(i-PrO)₄ has been used in the selective oxidation of sulfides to sulfoxides. An asymmetric oxidation of sulfides with high enantioselectivity has been reported using (R)-(−)-BINOL as the chiral auxiliary and Ti(i-PrO)₄ as catalyst. Recently, some Ti(i-PrO)₄ derivatives supported on silica have been investigated as catalysts for these oxidation reactions.

(C) Sharpless asymmetric epoxidation of allylic alcohols using tert-butyl hydroperoxide, diethyl tartrate, and Ti(i-PrO)₄ is the key step in the preparation of many products of synthetic and biological interest. The reaction usually takes place with good yield and high stereoselectivity. Sharpless epoxidation conditions have been used to prepare the phenylalkylamine motif of several calcium channel blockers, such as verapamil and emopamil.

SYNLETT 2003, No. 14, pp 2261–2262
Advanced online publication: 29.10.2003
DOI: 10.1055/s-2003-42111; Art ID: V08203s
© Georg Thieme Verlag Stuttgart · New York
(D) A dimethylsulfide–Ti(i-PrO)₄ mixture has been used to reduce hydroperoxides, obtained by photooxygenation of olefins. The reaction takes place at room temperature in 10 minutes with a high yield (93%).

(E) Ti(i-PrO)₄ enables the opening of 2,3-epoxy alcohols in the presence of nucleophiles. This occurs usually in high regioselectivity, as the ring-opening normally takes place at C-3. By this type of reaction, chiral benzosultams and amino acid derivatives have been obtained. This reaction can also be extended to 2,3-epoxycarboxylic acids and amides.

(F) Titanium-derived complexes can be used to catalyze aldol-Tishchenko reaction to afford stereoselectively 1,3-di-diol monoesters. Mehrwald et al. reported the one-pot synthesis of these compounds using a titanium ate complex, obtained in situ by mixing equimolecular amounts of Ti(i-PrO)₄ and BuLi. The reaction took place at room temperature with high anti-stereoselectivity.

(G) Ti(i-PrO)₄ has been used, together with a chiral ligand, in the preparation of optically active cyanohydrins via asymmetric tri-methylsilylecyanation of aldehydes or ketones. In particular, the chiral Ti(IV) salen complex 17 has been used in the preparation of fluoroepinephrine derivatives with high enantioselectivity.

(H) The title compound can be used to catalyze the addition of alkyl groups to aldehydes and ketones, an area where much effort has been devoted. This reaction was studied by Walsh et al. using bis(sulfonamido) or BINOL/Ti(i-PrO)₄ complexes, applied to aldehydes, ketones, and α,β-unsaturated ketones. In the case of 18, the reaction is totally chemoselective, as no conjugate addition compound was detected. Chan et al. have reported the preparation of chiral propargylic alcohols via enantioselective allylation of aldehydes using BINOL/Ti(i-PrO)₄ catalysts.

References