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I ntroduction

Oxoammonium salts are derived from nitroxide free radi-
cals by a one-electron oxidation (Figure 1). Their discov-
ery in 1965 by Golubev et al.* has led to the synthesis of a
series of oxidizing agents with diverse properties. The
parent nitroxides have been the subject of numerous oxi-
dation studies,? which involve the in situ synthesis of
oxoammonium salt by a secondary oxidant, thus making
the nitroxide a catalyst. These catalytic reactions and
many stoichiometric reactions of oxoammonium salts
have been reviewed.?® Oxoammonium salts used for sto-
ichiometric oxidations can be obtained by the oxidation of
nitroxides with halides or by the acid catalyzed dispropor-
tionation of nitroxides. Oxoammonium salts are stable
and highly specific oxidants. When the counter anion is
bromide or chloride, the salts are usually quite hygroscop-
ic, however the tetrafluoroborates are not. The perchlora-
tes are well known, but due to their latent ability to

Oxoammonium salts, generated in situ, by the oxidation
of a catalytic amount of nitroxide with a stoichiometric
amount of a secondary oxidant have found extensive use
in the oxidation of alcohols to aldehydes, ketones and,
under special circumstances, to carboxylic acids. The
secondary oxidant can be bleach,* oxone,® bromine or
chlorine,® iodine,” MCPBA 2 sodium bromite and chlo-
rite,’ and many other oxidants. Oxoammonium salts can
also be generated in situ electrochemically. %!
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detonate their use cannot be recommended. Figurel
Abstracts
(A) In carbohydrate chemistry, oxoammonium salts, generated in CHO COOH
situ, are selective oxidants. For instance, primary acohols or hemi- H——OH H——OH
acetals can be oxidized in the presence of secondary alcohols, thus HO——H i HO——H
making them useful for the oxidation of many sugar derivatives. T — T
These oxidations are pH and temperature dependent.'? Under basic
conditions, the selective oxidation of hemiacetals to the corre- H——OH H——OH
sponding | actones/esters can be achieved in the presence of unpro- CH,0H COOH
tected secondary alcohols.® OBn OBn
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i: TEMPO/NaOCI/KBr, H,0, pH 11.5

ii: 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxoammonium
tetrafluoroborate, pyridine, CH,Cl,
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(B) As stoichiometric reagents, oxoammonium salts represent a
family of non-heavy metal-based oxidation reagents. Since they
are colored, many reactions can be interpreted colorimetrically.
The oxidantstend to be highly functional group specific. The reac-
tions show counter-ion-dependent rates and specificities. These
oxidants do not induce isomerization of allylic acohols, and phe-
nolic benzyl alcohols can be oxidized without phenol protection.
The reactions do not take place when the alcohol carries a -oxy-
gen or a B-electron-withdrawing group. Benzyl and allyl alcohols
are rapidly oxidized, secondary aliphatic alcohols are less so, and
primary aliphatic alcohols require silicagel catalysis.*
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i: 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxoammonium
perchlorate, silica gel, CH,Cl,

(C) Using a stoichiometric ammount of oxidant, oxidation of diols
with 4 or 5 carbons generates cyclic lactones. 1,2—diols or 1,3—di-
ols dimerize to generate cyclic acetals.'> However, under catalytic
conditions, the oxidation of 1,2—diolsleadsto the synthesis of cyclic
hemiacetals.!®
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i: 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxoammonium
chloride, CH,Cl,

ii: TEMPO/NaOCI/KBr/NaHCO3/BuzNCl/ CH,Cl»

(D) Selective oxyfunctionalization of enolizable ketones with
oxoammonium salts can be achieved in high yields, thus making
them reagents of choice for the synthesis of vicinal-diketones.'

i- 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxoammonium
chloride, CH3CN; ii: p-TsOH, CH3CN, heat

(E) 1,2-Addition of oxoammonium salts to electron rich olefins
such as vinyl ethers, enamines and trialkylalkenes takes place in
high yields.’®
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(F) Oxoammonium salts will induce oxidative phenol couplings.
The phenol or quinone coupling products are obtained in good
yields. 192
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i: 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxoammonium
chloride, CH3CN, r.t.
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