Informationen aus Orthodontie & Kieferorthopädie 2003; 35(2): 113-119
DOI: 10.1055/s-2003-40410
Originalarbeit

© Georg Thieme Verlag Stuttgart · New York

Friktion bei Edelstahl-, Kunststoff- und selbstligierenden Brackets mit unterschiedlichem Ligaturmaterial

Evaluation of the friction of stainless steel, plastic, and self-ligating brackets in various bracket- ligature combinationsV. Cacciafesta1 , M. F. Sfondrini2 , A. Scribante3 , F. Auricchio4
  • 1 1 Ass. Clin. Professor · Abt. für Kieferorthopädie · Universität Pavia · Italien · und Universität Aahus, Dänemark
  • 2 2 Ass. Clin. Professor · Abteilung für Kieferorthopädie · Universität Pavia · Italien
  • 3 3 Wissensch. Mitarbeiter · Abteilung für Kieferorthopädie · Universität Pavia · Italien
  • 4 4 Professor · Abt. für Bautechnik · Universität Pavia · Italien
Further Information

Publication History

Publication Date:
08 July 2003 (online)

Zusammenfassung

Zweck der vorliegenden Studie war es, den Reibungswiderstand bei selbstligierenden Edelstahlbrackets (Damon SL, SDS/Ormco, Glendora, CA, USA), Brackets aus Polycarbonat (GAC Intl, Central Islip, NY, USA), aus gesintertem Edelstahl (Miniature Twin, 3 M/ Unitek, Monrovia, CA, USA), bei konventionellen Edelstahlbrackets (Standard Twin, SDS/Ormco, Glendora, CA, USA) und bei 0.017′′ × 0.025′′ kieferorthopädischen Drähten (Stainless Steel, SDS/Ormco, Glendora, CA, USA) zu messen und zu vergleichen.

Alle Brackets hatten einen 0.022′′ Slot und wurden - mit Ausnahme der selbstligierenden Brackets - mit zwei unterschiedlichen Ligaturmaterialien getestet: Stahldraht- (0.010′′, GAC intl, Central Islip, NY, USA) und elastischen (Leone, Florenz, Italien) Ligaturen.

Jede der 7 Bracket-Draht-Kombinationen wurde zehnmal getestet und jeder Test wurde mit einem neuen Muster durchgeführt. Sowohl Haft- als auch Gleitreibung wurden mit einem speziellen Gerät gemessen.

Die Daten wurden statistisch ausgewertet (Kruskal-Wallis und Mann-Whitney-U-Test). Die selbstligierenden Edelstahlbrackets erzeugten statistisch signifikant niedrigere Werte für Haft- und Gleitreibung als alle anderen Brackets; bei Brackets aus konventionellem bzw. gesintertem Edelstahl konnten keine signifikanten Unterschiede festgestellt werden, während bei Brackets aus Polycarbonat die höchsten Reibungswiderstände gemessen wurden. In Bezug auf die Haft- und die Gleitreibung ergaben sich zwischen elastischen Ligaturen und Stahldrahtligaturen ebenfalls keine signifikanten Unterschiede.

Abstract

The purpose of the present study was to measure and compare the level of frictional resistance generated between self-ligating stainless steel (Damon SL, SDS/Ormco, Glendora, CA), polycarbonate (Polycarbonate Brackets, GAC Intl, Central Islip, NY), sintered stainless steel (Miniature Twin, 3M/Unitek, Monrovia, CA), conventional stainless steel brackets (Standard Twin, SDS/Ormco, Glendora, CA), and a 0.017′′ × 0.025′′ stainless steel orthodontic wire (Stainless Steel, SDS/Ormco, Glendora, CA). All the brackets had a 0.022-inch slot and, except for the self-ligating brackets, were tested with two different orthodontic ligatures: stainless steel (0.010-inch size, GAC, Intl, Central Islip, NY) and elastomeric (Leone, Florence, Italy) ligatures.

Each of the 7 bracket-arch wire-combinations was tested 10 times and each test was performed with a new bracket-wire sample. Both static and kinetic friction were measured on a specially designed apparatus.

All the data were statistically analyzed (Kruskal-Wallis and Mann Whitney’s U tests). Stainless steel self-ligating brackets generated significantly lower static and kinetic frictional forces than all the other brackets; no significant differences in frictional forces were found between conventional and sintered stainless steel brackets, whereas polycarbonate brackets showed the highest friction values. No significant differences were found between stainless steel and elastomeric ligatures, and between static and kinetic frictional forces.

Literatur

  • 1 Omana H M, Moore R N, Bagby M D. Frictional properties of metal and ceramic brackets.  J Clin Orthod. 1992;  26 (7) 425-432
  • 2 Besançon R M. The Encyclopedia of Physics. Van Nostrand Reinhold, New York 1985; 3. Aufl.
  • 3 Pizzoni L, Ravnholt G, Melsen B. Frictional forces related to self-ligating brackets.  Eur J Orthod. 1998;  20 (3) 283-291
  • 4 Loftus B P, Artun J, Nicholls J I, Alonzo T A, Stoner J A. Evaluation of friction during sliding tooth movement in various bracket-arch wire combinations.  Am J Orthod Dentofacial Orthop. 1999;  116 (3) 336-345
  • 5 Kapur R, Sinha P K, Nanda R S. Comparison of frictional resistance in titanium and stainless steel brackets.  Am J Orthod Dentofacial Orthop. 1999;  116 (3) 271-274
  • 6 Andreasen G F, Quevedo F R. Evaluation of frictional forces in the 0.022 × 0.028 edgewise bracket in vitro.  J Biomech. 1970;  3 (2) 151-160
  • 7 Kapila S, Angolkar P V, Duncanson Jr M G, Nanda R S. Evaluation of friction between edgewise stainless steel brackets and orthodontic wires of four alloys.  Am J Orthod Dentofacial Orthop. 1990;  98 (2) 117-126
  • 8 Rose C M, Zernik J H. Reduced resistance to sliding in ceramic brackets.  J Clin Orthod. 1996;  30 (2) 78-84
  • 9 Braun S, Bluestein M, Moore B K, Benson G. Friction in perspective.  Am J Orthod Dentofacial Orthop. 1999;  115 (6) 619-627
  • 10 Schumacher H A, Bourauel C, Drescher D. Der Einfluss der Ligatur auf die Friktion zwischen Bracket und Bogen. Fortschr.  Kieferorthop. 1990;  51 (2) 106-116
  • 11 Riley J L, Garrett S G, Moon P C. Frictional forces of ligated plastic and metal edgewise brackets.  J Dent Res. 1979;  58 A21
  • 12 Berger J L. The influence of the SPEED bracket’s self-ligating design on force levels in tooth movement: a comparative in vitro study.  Am J Orthod Dentofacial Orthop. 1990;  97 (3) 219-228
  • 13 Shivapuja P K, Berger J. A comparative study of conventional ligation and self-ligation bracket systems.  Am J Orthod Dentofacial Orthop. 1994;  106 (5) 472-480
  • 14 Frank C A, Nikolai R J. A comparative study of frictional resistances between orthodontic bracket and arch wire.  Am J Orthod. 1980;  78 (6) 593-609
  • 15 Edwards G D, Davies E H, Jones S P. The ex-vivo effect of ligation technique on the static frictional resistance of stainless steel brackets and archwires.  Br J Orthod. 1995;  22 (2) 145-153
  • 16 Bazakidou E, Nanda R S, Duncanson MG J r, Sinha P. Evaluation of frictional resistance in esthetic brackets.  Am J Orthod Dentofacial Orthop. 1997;  112 (2) 138-144
  • 17 Sims A P, Waters N E, Birnie D J, Pethybridge R J. A comparison of the forces required to produce tooth movement in vitro using two self-ligating brackets and a pre-adjusted bracket employing two types of ligation.  Eur J Orthod. 1993;  15 (5) 377-385
  • 18 Sims A P, Waters N E, Birnie D J. A comparison of the forces required to produce tooth movement ex vivo through three types of pre-adjusted brackets when subjected to determined tipp or torque values.  Eur J Orthod. 1994;  21 (4) 367-373
  • 19 Read-Ward G E, Jones S P, Davies E H. A comparison of self-ligating and conventional orthodontic bracket systems.  Br J Orthod. 1997;  24 (4) 309-317
  • 20 Thomas S, Sherriff M, Birnie D. A comparative in vitro study of the frictional characteristics of two types of self-ligating brackets and two types of pre-adjusted edgewise brackets tied with elastomeric ligatures.  Eur J Orthod. 1998;  20 (5) 589-596
  • 21 Thorstenson G A, Kusy R P. Resistance to sliding of self-ligating brackets versus conventional stainless steel twin brackets with second-order angulation in the dry and wet (saliva) states.  Am J Orthod Dentofacial Orthop. 2001;  120 (4) 361-370
  • 22 Ogata R H, Nanda R S, Duncanson MG J r, Sinha P K, Currier G F. Frictional resistance in stainless steel bracket-wire combinations with effects of vertical deflections.  Am J Orthod Dentofacial Orthop. 1996;  109 (5) 535-542
  • 23 Angolkar P V, Kapila S, Duncanson MG J r, Nanda R S. Evaluation of friction between ceramic brackets and orthodontic wires of four alloys.  Am J Orthod Dentofacial Orthop. 1990;  98 (6) 499-506
  • 24 Kusy R P. Morphology of polycrystalline alumina brackets and its relationship to fracture toughness and strength.  Angle Orthod. 1988;  58 (3) 197-203
  • 25 Swartz M L. Ceramic brackets.  J Clin Orthod. 1988;  22 (2) 82-88
  • 26 Pratten D H, Popli K, Germane N, Gunsolley J C. Frictional resistance of ceramic and stainless steel orthodontic brackets.  Am J Orthod Dentofacial Orthop. 1990;  98 (5) 398-403
  • 27 Winchester L J. A comparison between the old Transcend and the new Transcend series 2000 bracket.  Br J Orthod. 1992;  19 (2) 109-116
  • 28 Ghafari J. Problems associated with ceramic brackets suggest limiting use to selected teeth.  Angle Orthod. 1992;  62 (2) 145-152
  • 29 Keith O, Jones S P, Davies E H. The influence of bracket material, ligation force and wear on frictional resistance of orthodontic brackets.  Br J Orthod. 1993;  20 (2) 109-115
  • 30 Articolo L C, Kusy R P. Influence of angulation on the resistance to sliding in fixed appliances.  Am J Orthod Dentofacial Orthop. 1999;  115 (1) 39-51
  • 31 Tanne K, Matsubara S, Shibaguchi T, Sakuda M. Wire friction from ceramic brackets during simulated canine retraction.  Angle Orthod. 1991;  61 (4) 285-290
  • 32 Tselepis M, Brockhurst P, West V C. The dynamic frictional resistance between orthodontic brackets and arch wires.  Am J Orthod Dentofacial Orthop. 1994;  106 (2) 131-138
  • 33 Drescher D, Bourauel C, Schumacher H A. Frictional forces between bracket and arch wire.  Am J Orthod Dentofacial Orthop. 1989;  96 (5) 397-404
  • 34 Bednar J R, Gruendeman G W, Sandrik J L. A comparative study of frictional forces between orthodontic brackets and arch wires.  Am J Orthod Dentofacial Orthop. 1991;  100 (6) 513-522
  • 35 Damon D H. The Damon low-friction bracket: a biologically compatible straight-wire system.  J Clin Orthod. 1998;  32 (11) 670-680
  • 36 Ireland A J, Sherriff M, McDonald F. Effect of bracket and wire composition on frictional forces.  Eur J Orthod. 1991;  13 (4) 322-328
  • 37 Ash J L, Nikolai R J. Relaxation of orthodontic elastomeric chains and modules in vitro and in vivo.  J Dent Res. 1978;  57 (5 - 6) 685-690
  • 38 Chang C H, Sherriff M. Stress relaxation properties of orthodontic elastics.  J Dent Res. 1991;  70 702 (Abstract)
  • 39 Downing A, McCabe J, Gordon P. A study of frictional forces between orthodontic brackets and archwires.  Br J Orthod. 1994;  21 (4) 349-357
  • 40 Keith O, Kusy R P, Whitley J Q. Zirconia brackets: an evaluation of morphology and coefficients of friction.  Am J Orthod Dentofacial Orthop. 1994;  106 (6) 605-614
  • 41 Downing A, McCabe J, Gordon P H. The effect of artificial saliva on the frictional forces between orthodontic brackets and archwires.  Br J Orthod. 1995;  22 (1) 41-46

Dr. Vittorio Cacciafesta

c/o Studio Prof. Giuseppe Sfondrini

Via Libertà 17

I-27100 Pavia, Italien

Phone: +39/03 82/3 50 75

Email: vcacciafesta@hotmail.com

    >