Cent Eur Neurosurg 2003; 64(2): 51-57
DOI: 10.1055/s-2003-40372
Originalarbeiten

© Georg Thieme Verlag Stuttgart · New York

Die Behandlung des kindlichen Hydrocephalus mit hydrostatischen Ventilen

The Treatment of Hydrocephalus in Infants and Children Using Hydrostatic ValvesC. Cedzich 1 , A. Wießner1
  • 1Neurochirurgische Klinik, Klinikum Süd Nürnberg, Akademisches Lehrkrankenhaus der Universität Erlangen-Nürnberg
Further Information

Publication History

Publication Date:
01 July 2003 (online)

Zusammenfassung

Shuntkomplikationen, insbesondere bei Frühgeborenen, können nicht nur zu einer erheblich verlängerten Liegedauer der Kinder führen, sondern auch das neurologische und intellektuelle Outcome beeinflussen [18]. Dies betrifft sowohl die mechanischen Komplikationen wie Unterdrainage durch Okklusion eines Katheters [7] [15] [32] oder Dysfunktion des Ventils selbst [1] [2] [7] [30] die Überdrainage [1] [4] [5] [7] [8] [9] [14] [19] [23] [24] [29] [33] [34] als auch die entzündlichen Komplikationen [7] [15] [17] [27]. Um diese Komplikationen zu vermeiden, ist auch die Wahl eines geeigneten Shuntsystems wichtig [1] [2] [3] [4] [5] [20]. In der vorliegenden Arbeit wurden bei insgesamt 32 Kindern mit einem Hydrocephalus unterschiedlicher Genese hydrostatische Ventile, die sog. Pädi GAV-Ventile (pädiatrische gravitationsassistierte Ventile) von Miethke [21] implantiert. Neben den Okklusionen und Infektionen wurden insbesondere objektivierbare überdrainagebedingte Komplikationen wie subdurale Hygrome/Hämatome, Schlitzventrikel und sekundäre Kraniosynostosen untersucht. Kein Patient zeigte diese Komplikationen. Im Gegenteil waren die Ventrikel im postoperativen MR des Schädels bzw. im Sonogramm im Vergleich mit Kindern ohne Hydrocephalus eher etwas vergrößert, gemessen am Evans-Index und der fronto-okzipitalen Ratio (FOR). Ob mit dem Pädi GAV Ventil allerdings tatsächlich langfristig die überdrainagebedingten Folgen oder Komplikationen reduziert werden können, werden weitere Untersuchungen zeigen müssen.

Abstract

Complications of CSF-shunt systems may not only prolong hospitalization, but also influence dramatically the neurological and mental outcome of patients [18], especially of premature newborns. Shunt complications may be caused by mechanical problems such as shunt occlusion [7] [15] [32] or dysfunction of the valve itself [1] [2] [7] [30]. Another cause of shunt complications is the overdrainage [1] [4] [5] [7] [8] [9] [14] [19] [23] [24] [29] [33] [34] and, lastly, shunt infection [7] [15] [17] [27].The choice of the specific shunt system [1] [2] [3] [4] [5] [20] seems to play an important role in avoiding the above mentioned complications.

In this study 32 children with hydrocephali due to different etiologies were treated with hydrostatic valves, the so called Pädi GAV (pediatric hydrostatic valve) valves developed by Miethke [21]. In addition to mechanical occlusions and shunt infections, the overdrainage related complications, such as subdural hematomas/ fluid collections, slit ventricles and secondary craniosynostoses were taken into consideration. None of the patients showed these complications. On the contrary, postoperative MRI or the ultrasound demonstrated prominent ventricles comparing these with those of non-hydrocephalic children as measured by the Evans-Index and FOR (fronto-to-occipital ratio). Whether the overdrainage-related complications actually reduced using Pädi GAV valves will be shown by further long-term follow ups. This study aims to evaluate the initial experience with the Pädi GAV shunt system, particularly with respect to the overdrainage-related problems.

Literatur

  • 1 Aschoff A, Benesch C, Kremer P, Fruh K, Klank A, Kunze S t. Overdrainage and shunt-technology. A critical comparison of programmable, hydrostatic and variable-resistance-valve and flow-reducing devices.  Child's Nerv Syst. 1995;  11 193-202
  • 2 Aschoff A. In-vitro- Testung von Hydrozephalus-Ventilen. Habilitationschrift, Heidelberg 1994
  • 3 Borgbjerg B M, Gjerris F, Albeck M J, Hauerberg J, Borgesen S E. Frequency and causes of shunt revisions in different cerebrospinal fluid shunt types.  Acta Neurochir (Wien). 1995;  136 189-194
  • 4 Czosnyka Z, Czosnyka M, Richards HK, Pickard J D. Posture-related overdrainage: Comparison of the performance of 10 hydrocephalus shunts in vitro.  Neurosurgery. 1998;  42 327-334
  • 5 Decq P, Barat J L, Duplessis E, Lequerinel C, Gendrault P, Keravel Y. Shunt failure in adult hydrocephalus: flow controlled shunt versus differential pressure shunts - A cooperative study in 289 patients. Surg Neurol 1995; 534 - 540
  • 6 Drake J M, Kestle J. Determing the best CSF shunt valve design: The pediatric valve design trial.  Neurosurgery. 1996;  38 604-607
  • 7 Drake J M, Kestle J RW, Milner R, Cinalli G, Boop F, Piatt J jr, Haines S, Schiff S J, Cochrane D D, Steinbock P, MacNeil N. et al . Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus.  Neurosurgery. 1998;  43 294-305
  • 8 Foltz E L, Shurtleff D B. Conversion of communicating hydrocephalus to stenosis or occlusion of the aqueduct during ventricular shunt.  J Neurosurg. 1966;  24 520-529
  • 9 Foltz E L, Blanks J P. Symptomatic low intracranial pressure in shunted hydrocephalus.  J Neurosurg. 1988;  68 401-408
  • 10 Gruber J E, Jenny P, Herzog B. Experiences with the antisiphon device (ASD) in shunt therapy of pediatric hydrocephalus.  J Neurosurg. 1984;  61 156-162
  • 11 Hassan M, Higashi S, Yamashita J. Risks in using siphon-reducing devices in adult patients with normal pressure hydrocephalus: bench test investigations with Delta valves.  J Neurosurg. 1996;  84 634-641
  • 12 Higashi S, Futami K, Matsuda H, Yamashita J, Hashimoto M, Hasegawa M, Tokuda K, Hassan M, Hisada K. Effects of head elevation on intracranial hemodynamics in patients with ventriculoperitoneal shunts.  J Neurosurg. 1994;  81 829-836
  • 13 Horton D, Pollay M. Fluid flow performance for a new siphon-control device for ventricular shunts.  J Neurosurg. 1990;  72 926-932
  • 14 Hubballah M Y, Hoffmann H J. The isolated lateral ventricle. Experience at the Hospital for Sick Children.  Surg Neurol. 1987;  27 220-222
  • 15 Korinth M C, Gilsbach J M. What is the ideal initial valve pressure setting in neonates with ventriculoperitoneal shunts?.  Pediatr Neurosurg. 2002;  36 169-174
  • 16 Kremer P, Aschoff A, Kunze S t. Risks of using siphon-reducing devices.  Child 's Nerv Syst. 1994;  10 231-235
  • 17 Kulkarni A V, Drake J M, Lamberti-Pasculli M. Cerebrospinal fluid shunt infection: a prospective study of risk factors.   J Neurosurg. 2001;  94 195-201
  • 18 Levy M L, Masri L S, McComb J G. Outcome for preterm infants with germinal matrix hemorrhage and progressive hydrocephalus.  Neurosurgery. 1997;  41 1111-1118
  • 19 Loop J W, Foltz E L. Craniostenosis and diploic lamination following operation for hydrocephalus.  Acta Radiol. 1972;  13 8-13
  • 20 Meier U, Zeilinger F S, Reyer T, Kintzel D. Klinische Erfahrungen mit verschiedenen Shuntsystemen beim Normaldruckhydrocephalus.  Zentralbl Neurochir. 2000;  61 143-149
  • 21 Miethke C, Affeld K. A new valve for the treatment of hydrocephalus.  Biomed Technik. 1994;  39 181-187
  • 22 Nulsen F E, Spitz E B. Treatment of hydrocephalus by direct shunt from ventricle to jugular vein.  Surg Forum. 1952;  2 399-403
  • 23 Oi S, Matsumoto S. Isolated fourth ventricle.  J Pediatr Neurosci. 1986;  2 125-133
  • 24 Oi S, Matsumoto S. Hydrocephalus in premature infants - characteristics and therapeutic problems.  Child's Nerv Syst. 1989;  5 76-82
  • 25 Papile L A, Musnick-Bruno G, Schaefer A. Relationship of cerebral intraventricular hemorrhage and early childhood neurologic handicap.  JÂ’Pediatr. 1983;  103 273-277
  • 26 Portnoy H D, Schulte R R, Fox J L. et al . Anti-siphon and reversible occlusion valves for shunting in hydrocephalus and preventing post-shunt subdural hematomas.  J Neurosurg. 1973;  38 729-738
  • 27 Puca A, Anile C, Maira G. et al . Cerebrospinal fluid shunting for hydrocephalus in the adult: factors related to shunt revision.  Neurosurgery. 1991;  29 822-826
  • 28 Pudenz R H, Foltz E L. Hydrocephalus overdrainage by ventricular shunts. A review and recommendations.  Surg Neurol. 1991;  35 200-212
  • 29 Raimondi A J, Samuelson G, Yaezagaray L, Norton T. Atresia of the foramina Luschka and Magendie: the Dandy-Walker cyst.  J Neurosurg. 1969;  31 202-216
  • 30 Reinprecht A, Dietrich W, Berger A, Bavinzski G, Weninger M, Czech T. Posthemorrhagic hydrocephalus in preterm infants: long-term follow-up and shunt related complications.  Child's Nerv Syst. 2001;  17 663-669
  • 31 Ruge J R, McLone D G. Cerebrospinal fluid diversion procedures, in Apuzzo MLJ (ed). Brain Surgery: Complications Avoidance and Management.  Churchill Livingstone, New York. 1993;  2 1463-1494
  • 32 Sainte-Rose C, Piatt J H, Renier D. et al . Mechanical complications in shunts.  Pediatr Neurosurg. 1991;  17 2-9
  • 33 Serlo W, Heikkinen E, Saukkonen A L. et al . Classification and management of the slit ventricle syndrome.  Child's Nerv Syst. 1985;  1 194-199
  • 34 Virella A A, Galarza M, Masterman-Smith M, Lemus R, Lazareff J A. Distal slit valve and clinically relevant CSF overdrainage in children with hydrocephalus.  Child's Nerv Syst. 2002;  18 15-18
  • 35 Watson D A. The Delta valve: a physiologic shunt system.  Child's Nerv Syst. 1994;  10 224-230

Priv.-Doz. Dr. Cornelia Cedzich

Klinik für Neurochirurgie · Klinikum Süd Nürnberg

Breslauer Str. 201

90471 Nürnberg · Germany

Phone: 00 49/9 11/3 98 27 87

Fax: 00 49/9 11/3 98 29 81

Email: cedzich@klinikum- nuernberg.de

    >