Synlett 2003(9): 1253-1254
DOI: 10.1055/s-2003-40334
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Convergent Synthesis of 4-Thiomaltooligosaccharides

Fabien Ratajczak, Lionel Greffe, Sylvain Cottaz, Hugues Driguez*
Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), Affiliated with Université Joseph Fourier, Grenoble, B.P. 53, 38041 Grenoble cedex 9, France
Fax: +33(4)76547203; e-Mail: Hugues.Driguez@cermav.cnrs.fr;
Further Information

Publication History

Received 20 March 2003
Publication Date:
30 June 2003 (online)

Abstract

Methyl 4,4II,4III-trithio-α-maltotetraoside (2) and its pentasaccharide homologue 3 were conveniently synthesized by treatment of methyl 4II-O-triflyl-4-thiomaltoside derivative 10 with the respective peracetylated 1,4-dithio- and 1,4,4II-trithio-maltooligosaccharides 16 and 18, in the presence of diethylamine

    References

  • 1 Driguez H. ChemBioChem  2001,  2:  311 
  • 2 Hrmova M. De Gori R. Smith BJ. Fairweather JK. Driguez H. Varghese JN. Fincher GB. Plant Cell  2002,  14:  1033 
  • 3 Blanc-Muesser M. Vigne L. Driguez H. Lehmann J. Steck J. Urbahns K. Carbohydr. Res.  1992,  224:  59 
  • 4 Quian M. Spinelli S. Driguez H. Payan F. Protein Sci.  1997,  6:  2285 
  • 5 Bennett S. von Itzstein M. Kiefel MJ. Carbohydr. Res.  1994,  259:  293 
  • 6 Blanc-Muesser M. Vigne L. Driguez H. Tetrahedron Lett.  1990,  31:  3869 
  • 7 Blanc-Muesser M. Driguez H. Lehmann J. Steck J. Carbohydr. Res.  1992,  223:  129 
  • 8 Blanc-Muesser M. Defaye J. Driguez H. J. Chem. Soc., Perkin Trans. 1  1982,  15 
  • 11 Thompson A. Wolfrom ML. Methods Carbohydr. Chem.  1963,  2:  215 
  • 12 Kunesch N. Miet C. Poisson J. Tetrahedron Lett.  1987,  28:  3569 
9

General Procedure for Coupling Reactions. To a solution in DMF (1 mL) of freshly prepared triflate (0.04 mmol) was added 1,4-dithioerytritol (0.04 mmol), the acceptor (0.05 mmol) and at 0 °C diethylamine (0.08 mmol). After stirring for 40-60 min at r.t., DMF was removed and the residue was diluted in CH2Cl2, washed with water and purified by flash chromatography.

10

Selected physical and spectroscopic data for key compounds. Ascending order of roman numerals were assigned to the residues starting from the reducing end. Compound 9: [α]D 20 = +123 (c = 1.6, CHCl3). 13C NMR (75 MHz, CDCl3): δ = 97.1 (C-1I), 84.7 (C-1II), 55.5 (CH3), 45.5 (C-4I). Compound 16: [α]D 20 = +261 (c = 2.6, CHCl3). 13C NMR (75 MHz, CDCl3): δ = 82.3 (C-1II), 80.1 (C-1I), 43.3 (C-4I). Compound 18: [α]D 20 = +268 (c = 1.8, CHCl3). 13C NMR (75 MHz, CDCl3): δ = 82.3, 82.4 (C-1II, 1III), 80.1 (C-1I), 43.6 (C-4I, 4II). Compound 19: [α]D 20 = +237 (c = 6.2, CHCl3). 13C NMR (75 MHz, CDCl3): δ = 97.0 (C-1I), 82.6, 83.3, 83.5 (C-1II, 1III, 1IV), 55.4 (CH3), 43.6, 45.5, 45.6 (C-4I, 4II, 4III). Compound 20: [α]D 20 = +258 (c = 1.1, CHCl3). 13C NMR (75 MHz, CDCl3): δ = 97.0 (C-1I), 82.5, 82.6, 83.3, 83.5 (C-1II, 1III, 1IV, 1V), 55.4 (CH3), 43.6,43.9, 45.5, 45.6 (C-4I, 4II, 4III, 4IV). Compound 2: 13C NMR (75 MHz, D2O): δ = 99.7 (C-1I), 85.9 (C-1II, 1III, 1IV), 55.4 (CH3), 47.0 (C-4I, 4II, 4III). Compound 3: 13C NMR (75 MHz, D2O): δ = 99.7 (C-1I), 86.0, 86.1 (C-1II, 1III, 1IV, 1V), 55.4 (CH3), 47.0 (C-4I, 4II, 4III, 4IV).