Fortschr Neurol Psychiatr 2003; 71(4): 211-219
DOI: 10.1055/s-2003-38506
Originalarbeit
© Georg Thieme Verlag Stuttgart · New York

Gedächtnis und Gehirn - Neurobiologische Korrelate von Gedächtnisstörungen

Memory and Brain - Neurobiological Correlates of Memory DisturbancesP.  Calabrese1 , H.  J.  Markowitsch2
  • 1Neurologische Universitätsklinik (Knappschaftskrankenhaus), Ruhr-Universität Bochum (Direktor: Prof. Dr. W. Gehlen)
  • 2Lehrstuhl für Physiologische Psychologie, Universität Bielefeld (Direktor: Prof. Dr. H. J. Markowitsch)
Further Information

Publication History

Publication Date:
04 April 2003 (online)

Zusammenfassung

Gedächtnis lässt sich sowohl nach chronologischen als auch nach inhaltlichen Aspekten differenzieren. Darüber hinaus lassen sich auch prozessspezifische Unterteilungen vornehmen (Einspeicherung, Transfer, Konsolidierung, Abruf). Die zeitliche Unterteilung bezieht sich zum einen auf die gängige Differenzierung in Kurzzeit- und Langzeitgedächtnis, zum anderen auf die in anterogrades („Neugedächtnis”) und retrogrades Gedächtnis („Altgedächtnis”) (gemessen von einem bestimmten Zeitpunkt, meist dem einer Hirnschädigung). Anterogrades Gedächtnis bedeutet das erfolgreiche Einspeichern und Ablagern neuer Information; retrogrades Gedächtnis die Fähigkeit, schon erfolgreich aufgenommene und/oder abgespeicherte Information abzurufen. Auf inhaltlicher Ebene lässt sich (Langzeit-)Gedächtnis in fünf Grundsysteme unterteilen - episodisches Gedächtnis, Wissenssystem, perzeptuelles, prozedurales und die Priming-Form des Gedächtnisses. Neurale Korrelate für diese Unterscheidungen werden unter besonderer Berücksichtigung des episodischen Gedächtnis und des Wissenssystems anhand hirngesunder und hirngeschädigter Individuen diskutiert. Es wird argumentiert, dass Strukturen des limbischen Systems bedeutend für die Einspeicherung von Information und für deren Übertragung in das Langzeitgedächtnis sind. Hierbei werden zwei, zwar in sich geschlossene, aber dennoch interagierende neurale Kreise herausgestrichen - einer primär für die kognitive Verarbeitung und einer für die Integration emotional relevanter Informationen. Für die Speicherung von Information werden primär neokortikale Strukturen als bedeutend angesehen und für den Abruf episodischer Information und von solcher aus dem Wissenssystem eine Kombination frontaler und anterior temporaler Kortexregionen. Hierbei wird von einer Hemisphärenspezialisierung in der Weise ausgegangen, dass die rechte Hirnhälfte weitgehend für den Abruf episodischer Informationen und die linke für den Abruf aus dem Wissenssystem „zuständig” sind. Evidenzen werden sowohl aus Ergebnissen herangezogen, die auf Untersuchungen an distinkt hirngeschädigten Patienten basieren, als auch auf solchen, die aus der experimentellen Anwendung von Methoden der funktionellen Bildgebung an hirngesunden Probanden hervorgingen. Ein Vergleich der Ergebnisse von Bildgebungsstudien bei gedächtnisgestörten Patienten aus dem psychiatrischen Bereich mit denjenigen von Amnestikern mit distinkten Hirnschädigungen zeigte, dass beide Patientengruppen Stoffwechseländerungen in ähnlichen Hirnregionen aufwiesen. Während sich bei Patienten mit distinkten, identifizierbaren organischen Hirngewebsschädigungen direkte anatomische Korrelate für die Amnesie nachweisen lassen, sind bei Patienten mit psychogenen Amnesien Änderungen in der Biochemie des Hirns (Stresshormonfreisetzungen, Transmitterausschüttungen) als physiologische Grundlage der Gedächtnisstörungen anzusehen.

Abstract

A differentiation of memory is possible on the basis of chronological and contents-related aspects. Furthermore, it is possible to make process-specific subdivisions (encoding, transfer, consolidation, retrieval). The time-related division on the one hand refers to the general differentiation into short-term and long-term memory, and, on the other, to that between anterograde and retrograde memory (“new” and “old memory”; measured from a given time point, usually that when brain damage occurred). Anterograde memory means the successful encoding and storing of new information; retrograde the ability to retrieve successfully acquired and/or stored information. On the contents-based level, memory can be divided into five basic long-term systems - episodic memory, the knowledge system, perceptual, procedural and the priming form of memory. Neural correlates for these divisions are discussed with special emphasis of the episodic and the knowledge systems, based both on normal individuals and brain-damaged subjects. It is argued that structures of the limbic system are important for encoding of information and for its transfer into long-term memory. For this, two independent, but interacting memory circuits are proposed - one of them controlling and integrating primarily the emotional, and the other primarily the cognitive components of newly incoming information. For information storage principally neocortical structures are regarded as important and for the recall of information from the episodic and semantic memory systems the combined action of portions of prefrontal and anterior temporal regions is regarded as essential. Within this fronto-temporal agglomerate, a moderate hemispheric-specificity is assumed to exist with the right-hemispheric combination being mainly engaged in episodic memory retrieval and the left-hemispheric in that of semantic information. Evidence for this specialization comes from the results from focally brain-damaged patients as well as from that functional brain imaging in normal human subjects. Comparing results from imaging studies in memory disturbed patients with brain damage and from patients with a psychiatric diagnosis (e. g., psychogenic amnesia) revealed that both patient groups demonstrate comparable metabolic changes on the brain level. It can therefore be concluded that in neurological patients distinct, identifiable tissue damage is existent, while in psychiatric patients changes in the brain's biochemistry (release of stress hormones, and transmitters) constitute the physiological bases for the memory disturbances.

Literatur

  • 1 Miller G A. The magical number seven plus minus two. Some limits on our capacity for processing information.  Psychological Review. 1956;  63 244-257
  • 2 Cowan N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity.  Behavioral and Brain Sciences. 2000;  24 87-185
  • 3 Baddeley A D. Working memory.  Science. 1992;  255 556-559
  • 4 Baddeley A D. The episodic buffer: a new component of working memory?.  Trends in Cognitive Sciences. 2000;  4 417-423
  • 5 Scoville W B, Milner B. Loss of recent memory after bilateral hippocampal lesions.  Journal of Neurology, Neurosurgery, and Psychiatry. 1957;  20 11-21
  • 6 Richards W. Time reproductions by H. M.  Acta Psychologica. 1973;  37 279-282
  • 7 Ribot T. Diseases of Memory. New York: D. Appleton & Co 1882
  • 8 Markowitsch H J. Memory and amnesia. In: Mesulam M-M (Ed.). Principles of Cognitive and Behavioral Neurology. New York: Oxford University Press 2000: 257-293
  • 9 Pantoni L, Lamassa M, Inzitari D. Transient global amnesia: a review emphasizing pathogenic aspects.  Acta Neurologica Scandinavica. 2000;  102 275-283
  • 10 Guillery B, Desgranges B, de la Sayette V, Landeau B, Eustache F, Baron J-C. Transient global amnesia: concomitant episodic memory and PET assessment in two additional patients.  Neuroscience Letters. 2002;  31 62-66
  • 11 Schmidtke K, Reinhardt M, Krause T. Cerebral perfusion during transient global amnesia: Findings with HMPAO SPECT.  Journal of Nuclear Medicine. 1998;  39 155-159
  • 12 Markowitsch H J. Transient global amnesia and related disorders. Toronto: Hogrefe & Huber Publishers 1990
  • 13 Zeman A Z, Boniface S J, Hodges J R. Transient epileptic amnesia: a description of the clinical and neuropsychological features in 10 cases and a review of the literature.  Journal of Neurology, Neurosurgery, and Psychiatry. 1998;  64 435-443
  • 14 Hasse-Sander J, Müller H, Schurig W, Kasper S, Möller H J. Auswirkungen der Elektrokrampftherapie auf die kognitiven Funktionen bei therapieresistenten Depressionen.  Nervenarzt. 1998;  69 609-616
  • 15 Tulving E. Episodic and semantic memory. In: Tulving E, Donaldson W (Eds.). Organization of Memory. New York: Academic Press 1972: 381-403
  • 16 Tulving E, Markowitsch H J. Episodic and declarative memory: Role of the hippocampus.  Hippocampus. 1998;  8 198-204
  • 17 Tulving E. Organization of memory: Quo vadis?. In: Gazzaniga MS (ed.). The Cognitive Neurosciences. Cambridge, MA: MIT Press 1995: 839-847
  • 18 Markowitsch H J. Intellectual Functions and the Brain. An Historical Perspective. Toronto: Hogrefe & Huber Publs 1992
  • 19 Chow K L. Effects of ablation. In: Quarton GC, Melnechuk T, Schmitt FO (Eds.). The Neurosciences New York: Rockefeller Univ. Press 1967: 705-713
  • 20 Papez J W. A proposed mechanism of emotion.  Archives of Neurology and Psychiatry. 1937;  38 725-743
  • 21 Sarter M, Markowitsch H J. The amygdala's role in human mnemonic processing.  Cortex. 1985;  21 7-24
  • 22 Sarter M, Markowitsch H J. The involvement of the amygdala in learning and memory: A critical review with emphasis on anatomical relations.  Behavioral Neuroscience. 1985;  99 342-380
  • 23 Milner B. Amnesia following operation on the temporal lobes. In: Whitty CWM, Zangwill OL (Eds.). Amnesia. London: Butterworth 1966: 109-133
  • 24 Milner B. Memory and the Medial Temporal Regions of the Brain. In: Pribram KH, Broadbent DE (Eds.). Biology of Memory. New York: Academic Press 1970: 29-50
  • 25 Milner B, Corkin S, Teuber H L. Further analysis of the hippocampal amnesic syndrome: Fourteen year follow-up study of H.M.  Neuropsychologia. 1968;  6 215-234
  • 26 Markowitsch H J. Diencephalic amnesia: a reorientation towards tracts?.  Brain Research Reviews. 1988;  13 351-370
  • 27 Calabrese P, Markowitsch H J, Haupts M, Gehlen W. The cognitive-mnestic performance profile of a patient with bilateral asymmetric thalamic infarction.  International Journal of Neuroscience. 1993;  71 101-106
  • 28 Markowitsch H J, von Cramon D Y, Schuri U. Mnestic performance profile of a bilateral diencephalic infarct patient with preserved intelligence and severe amnesic disturbances.  Journal of Clinical and Experimental Neuropsychology. 1993;  15 627-652
  • 29 Victor M, Adams R D, Collins G H. The Wernicke-Korsakoff-Syndrome (2nd ed.). Philadelphia: F. A. Davis Company 1989
  • 30 Bowers D, Verfaellie M, Valenstein E, Heilman K M. Impaired acquisition of temporal information in retrosplenial amnesia.  Brain and Cognition. 1988;  8 47-66
  • 31 Heilman K M, Bowers D, Watson R T, Day A, Valenstein E, Hammond E, Duara R. Frontal hypermetabolism and thalamic hypometabolism in a patient with abnormal orienting and retrosplenial amnesia.  Neuropsychologia. 1990;  28 161-169
  • 32 Valenstein E S, Bowers D, Verfaellie M, Heilman K M, Day A, Watson R T. Retrosplenial amnesia.  Brain. 1987;  110 1631-1646
  • 33 Calabrese P, Markowitsch H J, Harders A G, Scholz A, Gehlen W. Fornix damage and memory: A case report.  Cortex. 1995;  31 555-564
  • 34 Cahill L, Babinsky R, Markowitsch H J, McGaugh J L. Involvement of the amygdaloid complex in emotional memory.  Nature. 1995;  377 295-296
  • 35 Markowitsch H J, Calabrese P, Würker M, Durwen H F, Kessler J, Babinsky R, Brechtelsbauer D, Heuser L, Gehlen W. The amygdala's contribution to memory - A PET-study on two patients with Urbach-Wiethe disease.  NeuroReport. 1994;  5 1349-1352
  • 36 von Cramon D Y, Markowitsch H J. The septum and human memory. In: Numan R (Ed.). The Behavioral Neuroscience of the Septal Region. Berlin: Springer 2000: 380-413
  • 37 Kapur N. Remembering Norman Schwarzkopf: Evidence for two distinct long-term fact learning mechanisms.  Cognitive Neuropsychology. 1994;  11 661-670
  • 38 McClelland J L, McNaughton B L, O’Reilly R C. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory.  Psychological Review. 1995;  102 419-457
  • 39 Markowitsch H J. Anatomical bases of memory disorders. In: Gazzaniga MStp (Ed.). The New Cognitive Neurosciences (2nd ed.). Cambridge, MA: MIT Press 2000: 781-795
  • 40 Markowitsch H J, Kessler J, Schramm U, Frölich L. Severe degenerative cortical and cerebellar atrophy and progressive dementia in a young adult.  Neurocase. 2000;  6 357-364
  • 41 Markowitsch H J, Weber-Luxenburger G, Ewald K, Kessler J, Heiss W-D. Patients with heart attacks are not valid models for medial temporal lobe amnesia. A neuropsychological and FDG-PET study with consequences for memory research.  European Journal of Neurology. 1997;  4 178-184
  • 42 Fink G R, Markowitsch H J, Reinkemeier M, Kessler J, Heiss W-D. Cerebral representation of one's own past: neural networks involved in autobiographical memory.  Journal of Neuroscience. 1996;  16 4275-4282
  • 43 Markowitsch H J, Thiel A, Reinkemeier M, Kessler J, Koyuncu A, Heiss W-D. Right amygdalar and temporofrontal activation during autobiographic, but not during fictitious memory retrieval.  Behavioural Neurology. 2000;  12 181-190
  • 44 Markowitsch H J, Vandekerckhove M MP, Lanfermann H, Russ M O. Engagement of lateral and medial prefrontal areas in the ecphory of sad and happy autobiographical memories. Cortex 2002; in press
  • 45 Kapur N, Ellison D, Smith M P, McLellan D L, Burrowa E H. Focal retrograde amnesia following bilateral temporal lobe pathology.  Brain. 1992;  115 73-85
  • 46 Kroll N, Markowitsch H J, Knight R, von Cramon D Y. Retrieval of old memories - the temporo-frontal hypothesis.  Brain. 1997;  120 1377-1399
  • 47 Markowitsch H J, Ewald K. Right-hemispheric fronto-temporal injury leading to severe autobiographical retrograde and moderate anterograde episodic amnesia.  Neurology, Psychiatry and Brain Sciences. 1997;  5 71-78
  • 48 Calabrese P, Markowitsch H J, Durwen H F, Widlitzek B, Haupts M, Holinka B, Gehlen W. Right temporofrontal cortex as critical locus for old episodic memory.  Journal of Neurology, Neurosurgery, and Psychiatry. 1996;  61 304-310
  • 49 Markowitsch H J, Calabrese P, Neufeld H, Gehlen W, Durwen H F. Retrograde amnesia for famous events and faces after left fronto-temporal brain damage.  Cortex. 1999;  35 243-252
  • 50 Markowitsch H J, Calabrese P, Haupts M, Durwen H F, Liess J, Gehlen W. Searching for the anatomical basis of retrograde amnesia.  Journal of Clinical and Experimental Neuropsychology. 1993;  15 947-967
  • 51 Markowitsch H J, Calabrese P, Liess J, Haupts M, Durwen H F, Gehlen W. Retrograde amnesia after traumatic injury of the fronto-temporal cortex.  Journal of Neurology, Neurosurgery, and Psychiatry. 1993;  56 988-992
  • 52 Markowitsch H J, Calabrese P, Fink G R, Durwen H F, Kessler J, Härting C, König C, Mirzaian E B, Heiss W D, Heuser L, Gehlen W. Impaired episodic memory retrieval in a case of probable psychogenic amnesia.  Psychiatry Research. 1997;  74 119-126
  • 53 Fletcher P C, Frith C D, Baker S C, Shallice T, Frackowiak R SJ, Dolan R J. The mind's eye - precuneus activation in memory related imagery.  NeuroImage. 1995;  2 195-200
  • 54 Piefke M, Weiss P H, Zilles K, Markowitsch H J, Fink G R. Differential remoteness and emotional tone modulate the neural correlates of autobiographical memory. Brain 2003; in revision
  • 55 Nauta W JH. Expanding borders of the limbic system concept. In: Rasmussen T, Marino R. (Eds.). Functional Neurosurgery. New York: Raven Press 1979: 7-23
  • 56 Shah N J, Marshall J C, Zafiris O, Schwab A, Zilles K, Markowitsch H J, Fink G R. The neural correlates of person familiarity. A functional magnetic resonance imaging study with clinical implications.  Brain. 2001;  124 804-815
  • 57 Markowitsch H J, Fink G R, Thöne A IM, Kessler J, Heiss W-D. Persistent psychogenic amnesia with a PET-proven organic basis.  Cognitive Neuropsychiatry. 1997;  2 135-158
  • 58 Aldenhoff J. Überlegungen zur Psychobiologie der Depression.  Nervenarzt. 1997;  68 379-389
  • 59 Markowitsch H J, Kessler J, Van der Ven C, Weber-Luxenburger G, Heiss W-D. Psychic trauma causing grossly reduced brain metabolism and cognitive deterioration.  Neuropsychologia. 1998;  36 77-82
  • 60 Bremner J D. Does stress damage the brain?.  Biological Psychiatry. 1999;  45 797-805
  • 61 Bremner J D, Staib L H, Kaloupek D, Southwick S M, Soufer R, Charney D S. Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: a positron emission tomography study.  Biological Psychiatry. 1999;  45 806-816
  • 62 Bremner J D, Narayan M, Anderson E R, Staib L H, Miller H L, Charney D S. Hippocampal volume reduction in major depression.  American Journal of Psychiatry. 2000;  157 115-117
  • 63 O'Brien J T. The “glucocorticoid cascade” hypothesis in man.  British Journal of Psychiatry. 1997;  170 199-201
  • 64 Sapolsky R M. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders.  Archives of General Psychiatry. 2000;  57 925-935
  • 65 Sapolsky R M. The possibility of neurotoxicity in the hippocampus in major depression: A primer on neuron death.  Biological Psychiatry. 2000;  48 755-765
  • 66 Markowitsch H J. Organic and psychogenic retrograde amnesia: two sides of the same coin?.  Neurocase. 1996;  2 357-371
  • 67 Markowitsch H J. Functional neuroimaging correlates of functional amnesia.  Memory. 1999;  7 561-583
  • 68 Porter N M, Landfield P W. Stress hormones and brain aging: adding injury to insult?.  Nature Neuroscience. 1998;  1 3-4
  • 69 Markowitsch H J, Kessler J, Russ M O, Frölich L, Schneider B, Maurer K. Mnestic block syndrome.  Cortex. 1999;  35 219-230
  • 70 Markowitsch H J. Mnestische Blockaden als Stress- und Traumafolgen.  Zeitschrift für Klinische Psychologie und Psychotherapie. 2001;  30 204-211
  • 71 Markowitsch H J. Dem Gedächtnis auf der Spur: Vom Erinnern und Vergessen. Darmstadt: Wissenschaftliche Buchgesellschaft und PRIMUS-Verlag 2002

Dr. P. Calabrese

Neurologische Universitätsklinik - Bereich Neuropsychologie

In der Schornau 23-25

44892 Bochum

    >